Acta Univ. Agric. Silvic. Mendelianae Brun. 2021, 69(1), 21-31 | DOI: 10.11118/actaun.2021.002

Substantiation of the Working Width of the Tillage Implement

Anton Kuvaev1, Alexey Derepaskin2, Ivan Tokarev2
1 Agricultural Technical Institute, A. Baitursynov Kostanay State University, Baitursynov, 47, 110000 Kostanay, Republic of Kazakhstan
2 Kostanay branch of Scientific production center of agricultural engineering, LLP, Abay Ave., 34, 110000 Kostanay, Republic of Kazakhstan

The paper presents the results of theoretical and experimental studies on the substantiation of the working width of the tillage implement for deep tillage. The field experiment was conducted using the <<Kirovets>> K 744P2 tractor, with an engine power of 257 kW and an operating mass of 17,000 kg. It was revealed that the optimum working width of the implement should be 4.9-5.6 m at the travel speed of 2.2-2.0 m/s respectively. This provides a working capacity of 3.9-4.0 ha/h, with the fuel consumption of 13.7-14.1 kg/ha. The optimization criteria for selecting the optimum working width were the working capacity and specific fuel consumption per hectare. The data obtained based on the experimental studies are comparable with the results of theoretical studies, which indicates the reliability of the developed mathematical model for determining the working width of the agricultural implement.

Keywords: tillage implement, working width, draft resistance, travel speed, working capacity

Received: March 6, 2020; Accepted: December 14, 2020; Published: March 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kuvaev, A., Derepaskin, A., & Tokarev, I. (2021). Substantiation of the Working Width of the Tillage Implement. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis69(1), 21-31. doi: 10.11118/actaun.2021.002
Download citation

References

  1. AKSHALOV, K. A. and KUZHINOV, M. B. 2017. Principles of land use in Kazakhstan at the present stage: state, prospects [in Russian: Принципы землепользования в Казахстане на современном этапе: состояние, перспективы]. In: Nature protection and regional development: harmony and conflicts (by the year of ecology in Russia). Materials of the international scientific-practical conference. 1-5 October. Orenburg: Steppe Institute of the Ural Branch of the Russian Academy of Sciences, pp. 100-104.
  2. ASTAFIEV, V. L., OKUNEV, G. A., SHEPELEV, S. D. and KUZNETSOV, N. A. 2018. Machine Use Design in Agriculture [in Russian: Проектирование машиноиспользования в земледелии]. A textbook for university students. Kostanay: New line media.
  3. BAISHOLANOV, S. S. 2017. Agroclimatic Resources of the Kostanay Region [in Russian: Агроклиматические ресурсы Костанайской области]. Applied Scientific Reference Book. Astana: Institute of Geography of the Ministry of Education and Science of the Republic of Kazakhstan.
  4. CÂRDEI, P. 2001. Researches regarding the Motion Equation of the Tractor in Aggregation with the Machines for Soil Processing. [Online]. Available at: https://www.researchgate.net/publication/314154209_Researches_regarding_the_Motion_Equation_of_the_Tractor_in_Aggregation_with_the_Machines_for_Soil_Processing [Accessed: 2020, December 15].
  5. CARDEI, P., MATACHE, M. and NUTESCU, C. 2017. Optimum working conditions for variable width ploughs. [Online]. Available at: https://www.researchgate.net/ publication/318983573_Optimum_working_conditions_for_variable_width_ploughs [Accessed: 2020, December 15].
  6. CECCARELLI, M., CIGOLA, M. and RECINTO, G. 2017. New Activities For Cultural Heritage. In: Proceedings of the International Conference Heritagebot 2017. Cham: Springer International Publishing, pp. 1-11. Go to original source...
  7. CHUMAKOV, V. G. 2017. Technological Basics of Mechanical Soil Treatment [in Russian: Технологические основы механической обработки почвы]. Methodological Instructions for Performing Laboratory and Practical Training of Postgraduate Students. Kurgan: Kurgan SAA.
  8. CROITORU, S., VLADUT, V., MARIN, E., MATACHE, M. and DUMITRU, I. 2016. Determination of subsoiler traction force influenced by different working depth and velocity. Jelgava: Engineering for rural development.
  9. DEREPASKIN, A. I., KUVAEV, A. N. and TOKAREV, I. V. 2017. Justification of parameters of the roller organization for the main processing of seal soils [in Russian: Обоснование параметров пруткового катка к орудию для основной обработки уплотненных почв]. International agro-engineering, Scientific-technical journal, 2: 66-72.
  10. GUSKOV, V. V., VELEV, N. N., ATAMANOV, Y. E., BOCHAROV, N. F., KSENEVICH, I. P. and SOLONSKIY, A. S. 1988. Tractors. Theory [in Russian: Тракторы. Теория.] Textbook for university students. Moscow: Mashinostroenie.
  11. KHAFIZOV, K. A. and KHAFIZOV, R. N. 2015. Energy optimization method of main parameters of tractors. Vestnik of the Kazan State Agrarian University, 1(35): 75-81. Go to original source...
  12. KHAFIZOV, K. A. and KHAFIZOV, R. N. 2016. Results of multivariate experiment to determine dependence of the maximum pressure of tractor wheels on the soil from tractor's parameters and physical and mechanical properties of soil. Statistical analysis. Vestnik of the Kazan State Agrarian University, 4(42): 94-98. Go to original source...
  13. KUVAEV, A. N. 2018. Basic processing of stubble fields in northern grain sowing regions of Kazakhstan and modern tools for its implementation [in Russian: Основная обработка стерневых полей северных зерносеющих регионов Казахстана и современные орудия для её выполнения]. Multidisciplinary scientific journal 3i: intellect, idea, innovation, 2: 57-64.
  14. KUVAEV, A. N. and DEREPASKIN, A. I. 2018. The comparative evaluation of the constructive schemes of the subsurface plow for primary tillage of the consolidated soils [in Russian: Cравнительная оценка конструктивных схем плоскореза-глубокорыхлителя для основной обработки уплотненных почв]. In: Ways of implementation of the Federal Scientific and Technical Program of Agricultural Development for 2017-2025: Proceedings of the International Scientific and Practical Conference. 19-20 April, Kurgan, pp. 1039-1043.
  15. MACMILLAN, R. H. 2002. The mechanics of tractor-implement performance: theory and worked examples. A textbook for students and engineers. Melbourne, Australia: University of Melbourne.
  16. MOEENIFAR, A., MOUSAVI-SEYEDI, S. R. and KALANTARI, D. 2014. Influence of tillage depth, penetration angle and forward speed on the soil/thin-blade interaction force. Agric Eng Int: CIGR Journal, 16(1): 69-74.
  17. NURMIEV, A., KHAFIZOV, C., KHAFIZOV, R. and ZIGANSHIN, B. 2018. Optimization of main parameters of tractor working with soil-processing implement. In: Engineering for rural development. Materials of the international scientific conference. Jelgava, Latvia, pp. 161-167. Go to original source...
  18. OVCHINNIKOVA, K. P. and SHILOV, M. P. 2016. Influence of methods of autumn treatment of common chernozems on the differentiation of arable layer in the conditions of northern Kazakhstan [in Russian: Влияние приемов осенней обработки черноземов обыкновенных на дифференциацию пахотного слоя в условиях северного Казахстана]. Multidisciplinary scientific journal 3i: intellect, idea, innovation, 4: 57-64.
  19. PANOV, I. M. and VETOHIN, V. I. 2008. Current state and prospects of agricultural mechanics development in the light of V. P. Goryachkin's works [in Russian: Cовременное состояние и перспективы развития земледельческой механики в свете трудов В.П. Горячкина]. Vestnik of FGOU VPO MGAU, 2: 9-14.
  20. PETERBURGSKY TRACTORNY ZAVOD. 2019. Agricultural tractors. Peterburgsky Tractorny Zavod. [Online]. Available at: http://kirovets-ptz.com [Accessed: 2020, December 15].
  21. SHAROV, M. N. and STREKALEV, V. A. 1973. Mathematical model for determining the components of the cultivator's draft resistance [in Russian: Математическая модель для определения составляющих тягового сопротивления культиватора]. In: Analysis and evaluation of the efficiency of agricultural machinery structures. Collection of scientific papers. Rostov-on-Don, Russian Federation: RISHM, pp. 74-81.
  22. SHIROV, V. N. and PARKHOMENKO, G. G. 2013. Aprioristic determination of traction resistance of the deep-ripper by methods of the dimensions and similarity theory [in Russian: Априорное определение тягового сопротивления глубокорыхлителя методами теории размерностей и подобия]. Don Agrarian Science Bulletin, 1(21): 28-37.
  23. TABASHNIKOV, A. T. 2010. System of criteria for quality, reliability, economic efficiency of agricultural machinery. Instructional-methodical edition. Moscow: Rosinformagrotech.
  24. UNIVERSITY OF NEBRASKA-LINCOLN. 2020. Test Reports. Nebraska Tractor Test Laboratory. [Online]. Available at: https://tractortestlab.unl.edu/testreports [Accessed: 2020, December 15].
  25. ZHALNIN, E. 2019. Goryachkin's rational equation in the differential form. V.P. E3S Web of Conferences, 126: 1-4. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.