Acta Univ. Agric. Silvic. Mendelianae Brun. 2014, 62(5), 985-990 | DOI: 10.11118/actaun201462050985
Ecological and Socio-economic Evaluation of Weed Vegetation in Stands of Energy Grass Miscanthus × giganteus
- 1 Department of Ecology, Faculty of European Studies and Regional Development, Slovak University of Agriculture, Mariánska 10, 949 01 Nitra, Slovak Republic
- 2 Department of Sustainable Development, Faculty of European Studies and Regional Development, Slovak University of Agriculture, Mariánska 10, 949 01 Nitra, Slovak Republic
In experimental research plots in Kolíňany (SW Slovakia), ecological and socio-economic characteristics of weed vegetation were evaluated in the energy stands of Miscanthus × giganteus during three vegetation seasons (2010-2012). The spontaneous vegetation in the Miscanthus stand was dominated by annual therophytes (55.5 to 62%) and geophytes (17.2 to 22.2%). We identified two categories of herbaceous undergrowth in Miscanthus plantation: with potential positive (e.g. presence of medicinal plants and plants with melliferous potential) and potential negative impacts (e.g. invasive and toxic plants). Based on our observations, we can conclude that the species composition of spontaneous herbaceous vegetation is comparable with weed vegetation found on arable land.
Keywords: agricultural landscape, biodiversity, energy crop, Miscanthus × giganteus, weed
Grants and funding:
This paper was supported by the Slovak Grant Agency for Sciences (VEGA) Grant Nr. 1/1220/12 Modelling of growth of perennial grasses growing on climatic conditions of southern Slovakia, Grant Nr. 1/0942/12 Varietal dependence of production and energetic potential of fast growing woody plants of genus Salix and Populus in the first and second three-years harvest cycles and energetic grass Miscanthus in agro-climatic conditions of Southwestern Slovakia, Grant Nr. 2/0117/13 Assessment of status and dynamics of habitats using combination of modelling and remote sensing, 7 Framework Programme FP7-REGPOT-2011-1 STAR-AgroEnergy Scientific and technological advancement on research in agro-energy: an integrated approach to renewable energy generation according to sustainability criteria and the FPS COST Action FP1301 Innovative management and multifunctional utilization of traditional coppice forests - an answer to future ecological, economic and social challenges in the European forestry sector (EuroCoppice).
Published: December 2, 2014 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- BALVANERA, P., PFISTERER, A. B., BUCHMANN, N. et al. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters. 9: 1146-1156. DOI: 10.1111/j.1461-0248.2006.00963.x
Go to original source...
- BAUM, S., WEIH, M., BUSCH, G. et al. 2009. The impact of short rotation coppice plantations on phytodiversity. Landbauforschung - vTI Agriculture and forestry research 59(3): 163-170. [Online]. Available at: http://d-nb.info/100996027X/34. [Accessed 27 June 2011].
- BILLETER, R., LIIRA, J., BAILEY, D. et al. 2008.Indicators for biodiversity in agricultural landscapes: a pan-European study. Journal of Applied Ecology, 45(1): 141-150. DOI: 10.1111/j.1365-2664.2007.01393.x
Go to original source...
- BRAUN-BLANQUET, J. 1964. Pflanzensoziologie: grundzüge der vegetationskunde. 3rd Edition. Wien: Springer.
Go to original source...
- CLAPHAM, S. J. 2011.The abundance and diversity of small mammals and birds in mature crops of the perennial grasses Miscanthus ×giganteus and Phalaris arundinacea grown for biomass energy. Cardiff: Cardiff University. [Online]. Available at: http://orca.cf.ac.uk/15629/1/2011ClaphamSJPhD.pdf. [Accessed: 4 February 2013].
- DAUBER, J., JONES, M. B. and STOUT, J. C. 2010. The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy, 2(6): 289-309. DOI: 10.1111/j.1757-1707.2010.01058.x
Go to original source...
- EMMERSON, M., BOURKE, D., DAUBER, J. et al. 2011. The food versus fuel debate - what effect will replacing traditional crops with Miscanthus ×giganteus have on farmland biodiversity? In: Conserving Farmland Biodiversity: lessons learned and future prospects: proceedings of Teagasc biodiversity conference., 25-26 May. Wexford: Teagasc Carlow, 58-59.
- EPPEL-HOTZ, J. S., MARZINI, K. A. 1998. Examination of the ecological value of miscanthus expanses-faunistic studies. Biomass for Energy and Industry: proceedings of 10th European Conferenceand Technology Exhibition. In: Proceedings of the International Conference. Würzburg, 8-11 June., 778-779.
- FEHÉR, A., KONČEKOVÁ, L., GLEMNITZ, M. et al. 2012. Maintaining and Promoting Biodiversity. In: JAKOBSSON, CH. (ed.) Sustainable Agriculture. 1st Edition. BUP, Uppsala University: Elanders.
- GREEF, J. M., DEUTER, M., JUNG, C. et al. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Resources and Crop Evolution, 44(2): 185-195. DOI: 10.1023/A:1008693214629
Go to original source...
- JURKO, A. 1990. Ekonomické a socioekonomické hodnotenie vegetácie.1st Edition. Bratislava: Príroda.
- MARHOLD, K., HINDÁK, F. (eds.) 1998. Checklist of non-vascular and vascular plants of Slovakia. 1st Edition. Bratislava: Veda SAV.
- MCLAUGHLIN, S. B., WALSH, M. E. 1998. Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy, 14(4):317-324. DOI: 10.1016/S0961-9534(97)10066-6
Go to original source...
- MEDVECKÁ, J., KLIMENT, J., MÁJEKOVÁ, J. et al. 2012. Inventory of the alien flora of Slovakia. Preslia, 84(2): 257-309.
- MURRAY, L. D., BEST, L. B., JACOBSEN, T. J. et al. 2003. Potential effects on grassland birds of converting marginal cropland to switchgrass biomass production. Biomass Bioenergy, 25(2): 167-175. DOI: 10.1016/S0961-9534(02)00187-3
Go to original source...
- PRIMACK, R. B. 2010. Essentials of Conservation Biology. 5th Edition. Sunderland, MA: Sinauer Associates Inc.
- ROWE, R. L., STREET, N. R. and TAYLOR, G. 2009. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renewable and Sustainable Energy Reviews, 13(1): 260-279. DOI: 10.1016/j.rser.2007.07.008
Go to original source...
- SEMERE, T., SLATER, F. M. 2007. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus ×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy, 31(1): 20-29. DOI: 10.1016/j.biombioe.2006.07.001
Go to original source...
- STANLEY, D. A. 2013. Pollinators and pollination in changing agricultural landscapes; investigating the impacts of bioenergy crops. Dublin: Trinity College Dublin. [Online]. Available at: http://www.tcd.ie/research/simbiosys/images/DS%20PhD.pdf. [Accessed: 21 February 2014].
- SHMÚ. 2010-2012. Agrometeorologické a fenologické informácie. ZápadnéSlovensko. 2010-2012, číslo 1-12. Bratislava: SHMÚ Bratislava.
- WERLING, B. P., DICKSON, T. L., ISAACS, R. et al. 2014. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences, 111(4): 1652-1657. DOI: 10.1073/pnas.1309492111
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.