Acta Univ. Agric. Silvic. Mendelianae Brun. 2014, 62(5), 837-847 | DOI: 10.11118/actaun201462050837

The Response of Basal Area Increment in Old Sprout-origin Sessile Oak (Quercus petraea (Matt.) Liebl.) Trees During Their Conversion to a Coppice-with-standards

Zdeněk Adamec, Jan Kadavý, Michal Kneifl, Markéta ©plíchalová, Martin Klimánek
Department of Forest Management and Applied Geoinformatics, Mendel University in Brno, 613 00 Brno, Czech Republic

This paper addresses the response of adult sprout-origin sessile oaks (Quercus petraea (Matt.) Liebl.) to a strong release. Our research plot was established at the Training Forest Enterprise of Mendel University in Brno (Czech Republic) at the turn of 2008/2009. The plot is situated on a plateau with mesotrofic soil in a beech-oak forest vegetation zone at an altitude of 410 m above sea level. Tree responses were monitored using precise girth measurements. During the first year after the release, the basal area increment showed a positive correlation with only the tree diameter. During the second and third year, the basal area increment was also correlated with the release intensity. During the third year, the basal area increment was explained by the tree diameter, the crown shape, and the release intensity as well as individual types of epicormic shoot occurrence. The occurrence of epicormic shoots in the lower part of the trunks and umbel-shaped crowns increased the basal area increment. In the first, second and third year after thinning, the model explained 11.79%, 11.25% and 28.99%, respectively, of the basal area increment variability. Adult trees of sprout origin responded to a strong release very early (within two years) after felling.

Keywords: sessile oak, conversion, coppice-with-standards, strong release, competition, basal area increment, generalized linear model
Grants and funding:

This work was supported by the Ministry of Environment of the Czech Republic [Grant No. SP/2d4/59/07], Ministry of Agriculture of the Czech Republic [Grant No. QH71161], Ministry of Education, Youth and Sports of the Czech Republic [Grant No. CZ.1.07/2.3.00/20.0267] and Mendel University in Brno, Internal Grant Agency of the Faculty of Forestry and Wood Technology of the Czech Republic [Grant No. 40/2012]. We would like to thank two anonymous reviewers and Donald Beaton and Kim Černá for numerous notes that helped us to improve the article quality.

Published: December 2, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Adamec, Z., Kadavý, J., Kneifl, M., ©plíchalová, M., & Klimánek, M. (2014). The Response of Basal Area Increment in Old Sprout-origin Sessile Oak (Quercus petraea (Matt.) Liebl.) Trees During Their Conversion to a Coppice-with-standards. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis62(5), 837-847. doi: 10.11118/actaun201462050837
Download citation

References

  1. ASH, J. E. and BARKHAM, J. P. 1976. Changes and variability in the field layer of a coppiced woodland in Norfolk, England. J. Ecol., 64: 697-712. DOI: 10.2307/2258779 Go to original source...
  2. BUCKLEY, G. P. 1992. Ecology and Management of Coppice Woodlands. London: Chapman-Hall. Go to original source...
  3. BUFKA, A. 2011. Ceny pevných paliv pro domácnosti. Výsledky ąetření k červnu 2011. Praha: Ministerstvo průmyslu a obchodu České republiky.
  4. CAMPRODON, J. and BROTONS, L. 2006. Effects of undergrowth clearing on the bird communities of the Northwestern Mediterranean Coppice Holm oak forests. For. Ecol. Manage., 221(1-3): 72-82. DOI: 10.1016/j.foreco.2005.10.044 Go to original source...
  5. CAÑELLAS, I., RÍO, M. DEL, ROIG, S. and MONTERO, G. 2004. Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Ann. For. Sci., 61(3): 243-250. DOI: 10.1051/forest:2004017 Go to original source...
  6. CANNELL, M. G. R. 1989. Physiological basis of wood production: A review. Scand. J. For. Res., 4(1-4): 459-490. DOI: 10.1080/02827588909382582 Go to original source...
  7. CANNELL, M. G. R. and DEWAR, R. C. 1994. Carbon allocation in trees: A review of concepts for modelling. Adv. Ecol. Res., 25: 59-104. DOI: 10.1016/S0065-2504(08)60213-5 Go to original source...
  8. COLE, W. G., BALSILLIE, D., BEBBER, D. P. and THOMAS, S. C. 2004. Diameter increment in mature eastern white pine Pinus strobus L. following partial harvest of old-growth stands in Ontario, Canada. Trees - Struct. Funct., 18(1): 29-34. DOI: 10.1007/s00468-003-0274-y Go to original source...
  9. COLIN, F., ROBERT, N., DRUELLE, J.-L. and FONTAINE, F. 2008. Initial spacing has little influence on transient epicormic shoots in a 20-year-old sessile oak plantation. Ann. For. Sci., 65(5): 508-508. DOI: 10.1051/forest:2008032 Go to original source...
  10. COTTA, H. 1845. Anweisungen zum Waldbau. Dresden und Leipzig.
  11. DESOTO, L., OLANO, J. M., ROZAS, V. and DE LA CRUZ, M. 2010. Release of Juniperus thurifera woodlands from herbivore-mediated arrested succession in Spain. Appl. Veg. Sci., 13(1): 15-25. DOI: 10.1111/j.1654-109X.2009.01045.x Go to original source...
  12. DIGREGORIO, L. M., KRASNY, M. E. and FAHEY, T. J. 1999. Radial growth trends of sugar maple (Acer saccharum) in an Allegheny northern hardwood forest affected by beech bark disease. J. Torrey Bot. Soc., 126(3): 245-254. DOI: 10.2307/2997279 Go to original source...
  13. DOBSON, A. J. 2002. An Introduction to Generalized Linear Models. London: Chapman & Hall/CRC Press. Go to original source...
  14. FARRAR, J. L. 1961. Longitudinal variation in the thickness of the annual ring. For. Chron., 37: 323-349. DOI: 10.5558/tfc37323-4 Go to original source...
  15. FAYLE, D. C. F. 1973. Patterns of Annual Xylem Increment Integrated by Contour Presentation. Can. J. For. Res., 3: 105-111. DOI: 10.1139/x73-015 Go to original source...
  16. GEA-IZQUIERDO, G., CAÑELLAS, I. and MONTERO, G. 2008. Site index in agroforestry systems: age-dependent and age-independent dynamic diameter growth models for Quercus ilex in Iberian open oak woodlands. Can. J. For. Res., 38(1): 101-113. DOI: 10.1139/X07-142 Go to original source...
  17. GÉNARD, M., DAUZAT, J., FRANCK, N., LESCOURRET, F., MOITRIER, N., VAAST, P. and VERCAMBRE, G. 2008. Carbon allocation in fruit trees: from theory to modelling. Trees - Struct. Funct., 22(3): 269-282. DOI: 10.1007/s00468-007-0176-5 Go to original source...
  18. GENET, H., BRÉDA, N. and DUFRÊNE, E. 2010. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol., 30(2): 177-92. DOI: 10.1093/treephys/tpp105 Go to original source...
  19. HARMER, R. and HOWE, J. 2003. The silviculture and management of coppice woodlands. Edinburgh: Forestry Commission Publications.
  20. HOCHBICHLER, E. 1993. Methods of oak silviculture in Austria. Ann. For. Sci., 50(6): 583-591. DOI: 10.1051/forest:19930607 Go to original source...
  21. CHYTRÝ, M., KUČERA, T. and KOČÍ, M. (eds.) 2001. Katalog biotopů České republiky. Praha: Agentura ochrany přírody a krajiny.
  22. JOHNSON, P. S., SHIFLEY, S. R. and ROGERS, R. 2009. The Ecology and Silviculture of Oaks. Wallingford: CAB International. Go to original source...
  23. JONES, T. A. and THOMAS, S. C. 2004. The time course of diameter increment responses to selection harvests in Acer saccharum. Can. J. For. Res., 34(7): 1525-1533. DOI: 10.1139/x04-034 Go to original source...
  24. KADAVÝ, J., KNEIFL, M. and KNOTT, R. 2011a. Establishment and selected characteristics of the Hády coppice and coppice-with-standards research plot (TARMAG I). J. For. Sci., 57(10): 451-458. DOI: 10.17221/3233-JFS Go to original source...
  25. KADAVÝ, J., KNEIFL, M. and KNOTT, R. 2011b. Biodiversity and Target Management of Endangered and Protected Species in Coppices and Coppices-With-Standards Included in System of NATURA 2000. (Methodology of Establishment of Experimental Research Plots in the Conversion to Coppice and Coppice-with-Standards and their decription). Brno: Mendel University in Brno.
  26. KERR, G. and HARMER, R. 2001. Production of epicormic shoots on oak (Quercus robur): effects of frequency and time of pruning. Forestry, 74(5): 467-477. DOI: 10.1093/forestry/74.5.467 Go to original source...
  27. KODANI, J., YAMAMOTO, F., TANIGUCHI, S. and HASHIZUME, H. 2010. Effect of thinning on the growth of stems and development of epicormic shoots in a secondary forest of Quercus crispula and Fagus crenata. J. Japanese For. Soc., 92(4): 200-207. DOI: 10.4005/jjfs.92.200 Go to original source...
  28. KOENIG, W. D. and KNOPS, J. M. H. 1998. Scale of mast-seeding and tree-ring growth. Nature, 396(6708): 225-226. DOI: 10.1038/24293 Go to original source...
  29. KON©EL, J. 1931. Stručný nástin tvorby a pěstění lesů v bilogickém ponětí. Písek: Česká matice lesnická.
  30. KONVIČKA, M., ČÍ®EK, L. and BENE©, J. 2006. Ohroľený hmyz níľinných lesů: ochrana a management. Olomouc: Sagittaria.
  31. KUSS, O. 2002. Global goodness-of-fit tests in logistic regression with sparse data. Stat. Med., 21(24): 3789-3801. DOI: 10.1002/sim.1421 Go to original source...
  32. LACOINTE, A. 2000. Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models. Ann. For. Sci., 57(5-6): 521-533. DOI: 10.1051/forest:2000139 Go to original source...
  33. LARSON, P. R. 1963. Stem form development of forest trees. For. Sci., 5: 1-31. Go to original source...
  34. LATHAM, P. and TAPPEINER, J. 2002. Response of old-growth conifers to reduction in stand density in western Oregon forests. Tree Physiol., 22(2-3): 137-146. DOI: 10.1093/treephys/22.2-3.137 Go to original source...
  35. LEDERMANN, T. 2010. Evaluating the performance of semi-distance-independent competition indices in predicting the basal area growth of individual trees. Can. J. For. Res., 40(4): 796-805. DOI: 10.1139/X10-026 Go to original source...
  36. MACHAR, I. 2008. Historical development of floodplain forest in the Upper Moravian Vale (Vrapač National Nature Reserve, Czech Republic). J. For. Sci., 54(9): 426-437. DOI: 10.17221/46/2008-JFS Go to original source...
  37. MARTÍNEZ-VILALTA, J., VANDERKLEIN, D. and MENCUCCINI, M. 2007. Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia, 150(4): 529-44. DOI: 10.1007/s00442-006-0552-7 Go to original source...
  38. MCCULLAGH, P. and NELDER, J. 1989. Generalized Linear Models. 2nd Edition. London: Chapman and Hall. Go to original source...
  39. MCDOWELL, N., BROOKS, J. R., FITZGERALD, S. A. and BOND, B. J. 2003. Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions. Plant, Cell Environ., 26(4): 631-644. DOI: 10.1046/j.1365-3040.2003.00999.x Go to original source...
  40. MITCHELL, K. J. and KELLOGG, R. M. 1972. Distribution of Area Increment Over the Bole of Fertilized Douglas-Fir. Can. J. For. Res., 2: 95-97. DOI: 10.1139/x72-019 Go to original source...
  41. MIYA, H., YOSHIDA, T., NOGUCHI, M. and NAKAMURA, F. 2009. Individual growing conditions that affect diameter increment of tree saplings after selection harvesting in a mixed forest in northern Japan. J. For. Res., 14(5): 302-310. DOI: 10.1007/s10310-009-0136-6 Go to original source...
  42. MONSERUD, R. A. and STERBA, H. 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. Manage., 80(1-3): 57-80. DOI: 10.1016/0378-1127(95)03638-5 Go to original source...
  43. MONTES, F., CAÑELLAS, I., DEL RÍO, M., CALAMA, R. and MONTERO, G. 2004. The effects of thinning on the structural diversity of coppice forests. Ann. For. Sci., 61(8): 771-779. DOI: 10.1051/forest:2004074 Go to original source...
  44. MYERS, C.A. 1963. Vertical distribution of annual increment in thinned ponderosa pine. For. Sci., 9: 394-404.
  45. MZE. 2000. Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2000. Praha: Ministerstvo zemědělství České republiky.
  46. MZE. 2009. Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2009. Praha: Ministerstvo zemědělství České republiky.
  47. NETER, J., WASSERMAN, W. and KUNTER, M. H. 1990. Applied linear statistical models. 3rd Edition. Chicago: Irwin.
  48. NEWTON, M. and COLE, E. C. 1987. A sustained-yield scheme for old growth Douglas-fir. West. J. Appl. For., 2(1): 22-25. DOI: 10.1093/wjaf/2.1.22 Go to original source...
  49. O'HARA, K. L., YORK, R. A. and HEALD, R. C. 2008. Effect of pruning severity and timing of treatment on epicormic sprout development in giant sequoia. Forestry, 81(1): 103-110. DOI: 10.1093/forestry/cpm049 Go to original source...
  50. PELTOLA, H., MIINA, J., ROUVINEN, I. and KELLOMÄKI, S. 2002. Effect of Early Thinning on the Diameter Growth Distribution along the Stem of Scots Pine. Silva Fenn., 36(4): 813-825. DOI: 10.14214/sf.523 Go to original source...
  51. POLANSKÝ, B., ZACHAR, D., BEZAČINSKÝ et al. 1956. Pěstění lesů. III. díl. Praha: Státní zemědělské nakladatelství (SZN).
  52. PRETZSCH, H. and BIBER, P. 2010. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can. J. For. Res., 40(2): 370-384. DOI: 10.1139/X09-195 Go to original source...
  53. R DEVELOPMENT CORE TEAM. 2008. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  54. ROUVINEN, S. and KUULUVAINEN, T. 1997. Structure and asymmetry of tree crowns in relation to local competition in a natural mature Scots pine forest. Can. J. For. Res., 27(6): 890-902. DOI: 10.1139/x97-012 Go to original source...
  55. SANIGA, M. 2007. Pestovanie lesa. Zvolen: Technická univerzita.
  56. SNOWDON, P., WARING, H.D. and WOOLLONS, R.C. 1981. Effect of fertilizer and weed control on stem form and average taper in plantation-grown pines. Aust. For. Res., 11(3-4): 209-221.
  57. SPIECKER, H. 1991. Controlling diameter growth and natural pruning of valuable Sessile and Pedunculate oaks (Quercus petraea [Matt.] Liebl. and Quercus robur L.). Freiburg: Institute for Forest Growth, UNI.
  58. SPITZER, L., KONVICKA, M., BENES, J., TROPEK, R., TUF, I. H. and TUFOVA, J. 2008. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Conserv., 141(3): 827-837. DOI: 10.1016/j.biocon.2008.01.005 Go to original source...
  59. STATSOFT. 2011. Statistica 10.
  60. SZYMURA, T. H. 2012. How does recent vegetation reflects previous system of forest management? Pol. J. Ecol., 60(4): 859-862.
  61. ©MELKO, ©. 1975. ©túdium rastu a prírastku lesných stromov a porastov. Část 2. Záverečná zpráva. Zvolen: LF V©LD.
  62. ©MELKO, ©. 1982. Biometrické zákonitosti rastu a prírastku lesných stromov a porastov. Bratislava: Príroda.
  63. TASISSA, G. and BURKHART, H. E. 1997. Modeling thinning effects on ring width distribution in loblolly pine (Pinus taeda). Can. J. For. Res., 27(8): 1291-1301. DOI: 10.1139/x97-092 Go to original source...
  64. THOMSON, A. J. and BARCLAY, H. J. 1984. Effects of thinning and urea fertilization on the distribution of area increment along the boles of Douglas-fir at Shawnigan Lake, British Columbia. Can. J. For. Res., 14(6): 879-884. DOI: 10.1139/x84-157 Go to original source...
  65. ÚHÚL. 2008. Národní lesnický program pro obobí do roku 2013. Praha: ÚHÚL Brandýs nad Labem.
  66. UTINEK, D. 2004. Převody pařezin na střední les v městských lesích Moravský Krumlov. (zaloľení pokusných ploch). Brno: Mendelova zemědělská a lesnická univerzita v Brně.
  67. UTINEK, D. 2006. Návrat ke středním lesům v městských lesích Moravský Krumlov. Lesn. Práce, 85(2): 11-13.
  68. VALINGER, E. 1992. Effects of thinning and nitrogen fertilization on stem growth and stem form of Pinus sylvestris trees. Scand. J. For. Res., 7(1-4): 219-228. DOI: 10.1080/02827589209382714 Go to original source...
  69. VIEWEGH, J., KUSBACH, A. and MIKESKA, M. 2003. Czech forest ecosystem classification. J. For. Sci., 49(2): 85-93. Go to original source...
  70. VYSKOT, M. 1958. Pěstění dubu. Praha: Státní zemědělské nakladatelství (SZN).
  71. WARING, R. H. and PITMAN, G. B. 1985. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology, 66(3): 889-897. DOI: 10.2307/1940551 Go to original source...
  72. WEINER, J. and THOMAS, S.C. 2001. The nature of tree growth and the "age-related decline in forest productivity". Oikos, 94(2): 374-376. DOI: 10.1034/j.1600-0706.2001.940219.x Go to original source...
  73. WIKLUND, K., KONÖPKA, B. and NILSSON, L.-O. 1995. Stem form and growth in Picea abies (L.) karst, in response to water and mineral nutrient availability. Scand. J. For. Res., 10(4): 326-332. DOI: 10.1080/02827589509382899 Go to original source...
  74. WYKOFF, W. R. 1990. A Basal Area Increment Model for Individual Conifers in the Northern Rocky Mountains. For. Sci., 36(4): 1077-1104.
  75. YANG, Y., HUANG, S., MENG, S. X., TRINCADO, G. and VANDERSCHAAF, C. L. 2009. A multilevel individual tree basal area increment model for aspen in boreal mixedwood stands. Can. J. For. Res., 39(11): 2203-2214. DOI: 10.1139/X09-123 Go to original source...
  76. YORK, R. A., FUCHS, D., BATTLES, J. J. and STEPHENS, S. L. 2010. Radial growth responses to gap creation in large, old Sequoiadendron giganteum. Appl. Veg. Sci., 13(4): 498-509. DOI: 10.1111/j.1654-109X.2010.01089.x Go to original source...
  77. ZUUR, A. F., IENO, E. N., WALKER, N. J. et al. 2009. Mixed Effects Models and Extensions in Ecology with R. New York: Springer. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.