Acta Univ. Agric. Silvic. Mendelianae Brun. 2013, 61(7), 2923-2929 | DOI: 10.11118/actaun201361072923
Selection of scenarios in qualitative models: The case of a government tenders model
- Department of Economics, Faculty of Business and Management, Brno University of Technology, Kolejní 4, 612 00 Brno, Czech Republic
The task of this methodological paper is to clarify the process of selection of scenarios in qualitative models. Articles on qualitative modeling usually do not cover the topic of scenarios selection exhaustively, only the basic operations are (sometimes) described. This lack of detail might lead to confusion and overly simplified understanding of the process of model development when new users meet with qualitative models. We outline the basic principle of consistency, i.e. that scenarios inconsistent with a given knowledge item entered into the qualitative model are discarded from the model. With help of this principle, the vast set of all "imaginable" scenarios (2712 in our case) can be reduced to just 7 scenarios in less than 40 steps. A manageable number of scenarios is important to enable interpretation and practical use, e.g. to evaluate concrete tasks and policies. For our demonstration we use our previously published model of government tenders. The current paper can help those who want to understand qualitative models and their development better, it is not restricted to the problem of qualitative modeling of government tenders.
Keywords: qualitative model, scenarios, consistency, model development, knowledge engineering
Received: August 12, 2013; Published: December 24, 2013 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- BOHANEC, M., RAJKOVIC, V., SEMOLIC, B. and POGACNIK, A., 1995: Knowledge-based portfolio analysis for project evaluation. Information & Management, 28, 5: 293-302. ISSN 0378-7206. DOI: 10.1016/0378-7206(94)00048-N
Go to original source...
- BENAROCH, M. and DHAR, V., 1995: Controlling the complexity of investment decisions using qualitative reasoning techniques. Decision Support Systems, 15, 2: 115-131. ISSN 0167-9236. DOI: 10.1016/0167-9236(94)00031-M
Go to original source...
- BOURSEAU, P. et al., 1995: Qualitative reasoning: A survey of techniques and applications. AI Communications, 8, 3-4: 119-192. ISSN 0921-7126.
Go to original source...
- CURIC, A., KERN, T. and RAJKOVIC, V., 2008: A qualitative model for road investment appraisal. Transport Policy, 15, 4: 225-231. ISSN 0967-070X.
Go to original source...
- DE JONG, H., 2004: Qualitative simulation and related approaches for the analysis of dynamic systems. Knowledge Engineering Review, 19, 2: 93-132. ISSN 0269-8889. DOI: 10.1017/S0269888904000177
Go to original source...
- DE KLEER, J. and BROWN, J., 1984: A qualitative physics based on confluences. Artificial Intelligence, 24, 1-3: 7-83. ISSN 0004-3702. DOI: 10.1016/0004-3702(84)90037-7
Go to original source...
- DOHNAL, M., 1991: A methodology for common-sense model development. Computers in Industry, 16, 2: 141-158. ISSN 0166-3615. DOI: 10.1016/0166-3615(91)90086-O
Go to original source...
- HINKKANEN, A., LANG, K. R. and WHINSTON, A. B., 2003: A set-theoretical foundation of qualitative reasoning and its application to the modeling of economics and business management problems. Information Systems Frontiers, 5, 4: 379-399. ISSN 1387-3326. DOI: 10.1023/B:ISFI.0000005652.72048.4d
Go to original source...
- HURME, M., JARVELAINEN, M., PARSONS, S. and DOHNAL, M., 1993: A qualitative commonsense method for optimization of complex engineering systems, Engineering Optimization, 20, 4: 323-339. ISSN 0305-215X. DOI: 10.1080/03052159308941288
Go to original source...
- KHAN, S. and SCHRODER, B., 2009: Use of rules in decision-making in government outsourcing. Industrial Marketing Management, 38, 4: 379-386. ISSN 0019-8501. DOI: 10.1016/j.indmarman.2009.03.002
Go to original source...
- KONEČNÝ, J., VÍCHA, and T. DOHNAL, M., 2010: Qualitative phase portrait of modified Black-Scholes model. Expert Systems with Applications, 37, 5: 3823-3826. ISSN 0957-4174. DOI: 10.1016/j.eswa.2009.11.037
Go to original source...
- KUIPERS, B., 1986: Qualitative simulation. Artificial Intelligence, 29, 3: 289-338. ISSN 0004-3702. DOI: 10.1016/0004-3702(86)90073-1
Go to original source...
- KUIPERS, B., 1989: Qualitative reasoning: Modeling and simulation with incomplete knowledge. Automatica, 25, 4: 571-585. ISSN 0005-1098. DOI: 10.1016/0005-1098(89)90099-X
Go to original source...
- LUŇÁČEK, J. and MARTINOVIČOVÁ, D., 2010: Qualitative modeling macroeconomics indicators for prediction of progress branch. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 58, 6: 269-278. ISSN 1211-8516. DOI: 10.11118/actaun201058060269
Go to original source...
- PAWLAK, Z., 1982: Rough sets. Journal of Computer & Information Sciences, 11, 5: 341-356. ISSN 1530-9827. DOI: 10.1007/BF01001956
Go to original source...
- PRICE, C. J. et al., 2006: Qualitative futures. Knowledge Engineering Review, 21, 4: 317-334. ISSN 0269-8889. DOI: 10.1017/S026988890600097X
Go to original source...
- RAIMAN, O., 1991: Order of magnitude reasoning. Artificial Intelligence, 51, 1-3: 11-38. ISSN 0004-3702. DOI: 10.1016/0004-3702(91)90107-U
Go to original source...
- REBOLLEDO, M. R., 2005: Integrating rough sets and situation-based qualitative models for process monitoring considering vagueness and uncertainty. Engineering Applications of Artificial Intelligence, 18, 5: 617-632. ISSN 0952-1976. DOI: 10.1016/j.engappai.2004.12.002
Go to original source...
- REBOLLEDO, M., 2006: Rough intervals: Enhancing intervals for qualitative modeling of technical systems. Artificial Intelligence, 170, 8: 667-685. ISSN 0004-3702. DOI: 10.1016/j.artint.2006.02.004
Go to original source...
- RE®ŇÁKOVÁ, M., WOUTERS, H. and DOHNAL, M., 2012a: Equationless qualitative models of science parks: Part I, individual scenarios as models solutions. International Journal of Technology Intelligence and Planning, 8, 3: 30-315. ISSN 1740-2832.
Go to original source...
- RE®ŇÁKOVÁ, M., WOUTERS, H., DOHNAL, M. and BRO®, Z., 2012b: Equationless qualitative models of science parks: Part II, optimisation by time sequences of scenarios. International Journal of Technology Intelligence and Planning, 8, 3: 295-306. ISSN 1740- 2832. DOI: 10.1504/IJTIP.2012.048575
Go to original source...
- TRAVE-MASSUYES, L., IRONI, L. and DAGUE, P., 2004: Mathematical foundations of qualitative reasoning. AI Magazine, 24, 4: 91-106. ISSN 0738-4602.
- VESELÝ, ©. and DOHNAL, M., 2012: Decision making in government tenders: A formalized qualitative model. Acta Univ. Agric. et Silvic. Mendel. Brun., 60, 4: 397-406. ISSN 1211-8516. DOI: 10.11118/actaun201260040397
Go to original source...
- VÍCHA, T. and DOHNAL, M., 2008a: Qualitative feature extractions of chaotic systems. Chaos, Solitons & Fractals, 38, 2: 364-373. ISSN 0960-0779. DOI: 10.1016/j.chaos.2008.01.008
Go to original source...
- VÍCHA, T. and DOHNAL, M., 2008b: Qualitative identification of chaotic systems behaviours. Chaos, Solitons & Fractals, 38, 1: 70-78. ISSN 0960-0779. DOI: 10.1016/j.chaos.2008.01.027
Go to original source...
- WOUTERS, H., 2011: Multi-objective optimization of science parks based on qualitative equationless relations. Dissertation thesis. Brno: University of technology, Faculty of business and management. 158 p.
- ZADEH, L. A., 1965: Fuzzy Sets. Information and Control, 8, 3: 338-353. ISSN 0019-9958. DOI: 10.1016/S0019-9958(65)90241-X
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.