Acta Univ. Agric. Silvic. Mendelianae Brun. 2013, 61(4), 1129-1136 | DOI: 10.11118/actaun201361041129

Exploration into power of homogeneity and serial correlation tests

Luboš Střelec, Václav Adamec
Department of Statistics and Operation Analysis, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic

Verification of regression models is primarily based on analysis of error terms and constitutes one of the most important steps in applied regression analysis. In cross-sectional models, the error terms are typically heteroskedastic, while in time series regressions the errors are often affected by serial correlation. Consequently, in this paper, we focus on Monte Carlo simulations applied to explore the power of several tests of homogeneity and tests for presence of autocorrelation. In the past decades, the computational power has increased significantly to allow the benefit of simulation from exact distributions, which are not defined explicitly. We will discuss 1) testing of homogeneity for a given number of components in the exponential mixture approximated by subpopulations and 2) simulation of power in several commonly used tests of autocorrelation. For the first case, we consider exact likelihood ratio test (ELR) and exact likelihood ratio test against the alternative with two-component subpopulation (ELR2). In the second case, we consider the Durbin-Watson, Durbin h, Breusch-Godfrey, Box-Pierce and Ljung-Box tests of 1st order serial correlation and the runs test of randomness in two different types of linear regression models.

Keywords: Monte Carlo simulation, power study, homogeneity, autocorrelation

Received: April 11, 2013; Published: July 13, 2013  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Střelec, L., & Adamec, V. (2013). Exploration into power of homogeneity and serial correlation tests. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis61(4), 1129-1136. doi: 10.11118/actaun201361041129
Download citation

References

  1. BOX, G. E. P. and PIERCE, D. A., 1970: Distribution of residual correlations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65, 332: 1509-1526. ISSN 0162-1459. DOI: 10.1080/01621459.1970.10481180 Go to original source...
  2. BREUSCH, T. S., 1978: Testing for autocorrelation in dynamic linear models, Australian Economic Papers, 17, 31: 334-355. ISSN 1467-8454. DOI: 10.1111/j.1467-8454.1978.tb00635.x Go to original source...
  3. DURBIN, J. and WATSON, G. S., 1950: Testing for serial correlation in least squares regression I. Biometrika, 37, 3-4: 409-428. ISSN 0006-3444. Go to original source...
  4. GEARY, R. C., 1970: Relative efficiency of count sign changes for assessing residual autoregression in least squares regression. Biometrika, 57, 1: 123-127. ISSN 0006-3444. DOI: 10.1093/biomet/57.1.123 Go to original source...
  5. GREENE, W. H., 2002: Econometric analysis. 5th ed. New Jersey: Prentice Hall, 1026 s. ISBN 978-0-130-66189-0.
  6. GUJARATI, D. N., 2004: Basic econometrics. 4th ed. New York: The McGraw-Hill, 1032 s. ISBN 978-0070597938.
  7. KLEIBER, C. and ZEILEIS, A., 2008: Applied Econometrics with R. New York: Springer-Verlag, 232 s. ISBN 978-0-387-77316-2. Go to original source...
  8. LJUNG, G. M. and BOX, G. E. P., 1978: On a measure of lack of fit in time series models. Biometrika, 65, 2: 297-303. ISSN 0006-3444. DOI: 10.1093/biomet/65.2.297 Go to original source...
  9. R Core Team, 2012: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org/.
  10. RUBLÍK, F., 1989a: On optimality of the LR tests in the sense of exact slopes. I. General case. Kybernetika, 25, 1: 13-25. ISSN 0023-5954.
  11. RUBLÍK, F., 1989b: On optimality of the LR tests in the sense of exact slopes. II. Application to individual distributions. Kybernetika, 25, 2: 117-135. ISSN 0023-5954.
  12. STEHLÍK, M., 2003: Distribution of exact tests in the exponential family. Metrika, 57, 2: 145-164. ISSN 0026-1335. DOI: 10.1007/s001840200206 Go to original source...
  13. STEHLÍK, M., 2006: Exact likelihood ratio scale and homogeneity testing of some loss processes. Statistics and Probability Letters, 76, 1: 19-26. ISSN 0167-7152. DOI: 10.1016/j.spl.2005.06.005 Go to original source...
  14. STEHLÍK, M., 2008: Homogeneity and scale testing of generalized gamma distribution. Reliability Engineering & System Safety, 93, 12: 1809-1813. ISSN 0951-8320. DOI: 10.1016/j.ress.2008.03.012 Go to original source...
  15. STEHLÍK, M. and OSOSKOV, G., 2003: Efficient testing of homogeneity, scale parameters and number of components in the Rayleigh mixture. JINR Rapid Communications, E-11-2003-116. Available online: URL http://wwwinfo.jinr.ru/~ososkov/Stehlik.pdf, cited 12-02-2013.
  16. STEHLÍK, M. and WAGNER, H., 2011: Exact Likelihood Ratio Testing for Homogeneity of the Exponential Distribution. Communications in Statistics - Simulation and Computation, 40, 5: 663-684. ISSN 0361-0918. DOI: 10.1080/03610918.2010.551011 Go to original source...
  17. STŘELEC, L. and STEHLÍK, M., 2012a: Comparative simulation study of likelihood ratio tests for homogeneity of the exponential distribution. Acta Univ. Agric. et Silvic. Mendel. Brun., 60, 7: 307-314. ISSN 1211-8516. DOI: 10.11118/actaun201260070307 Go to original source...
  18. STŘELEC, L. and STEHLÍK, M., 2012b: On simulation of exact tests in Rayleigh and normal families. In: SIMOS, T. E., Numerical analysis and applied mathematics ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. Melville, New York: American Institute of Physics, 449-452. ISBN 978-0-7354-1091-6.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.