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Abstract
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Verifi cation of regression models is primarily based on analysis of error terms and constitutes one 
of the most important steps in applied regression analysis. In cross-sectional models, the error 
terms are typically heteroskedastic, while in time series regressions the errors are o� en aff ected 
by serial correlation. Consequently, in this paper, we focus on Monte Carlo simulations applied to 
explore the power of several tests of homogeneity and tests for presence of autocorrelation. In the 
past decades, the computational power has increased signifi cantly to allow the benefi t of simulation 
from exact distributions, which are not defi ned explicitly. We will discuss 1) testing of homogeneity 
for a given number of components in the exponential mixture approximated by subpopulations 
and 2) simulation of power in several commonly used tests of autocorrelation. For the fi rst case, 
we consider exact likelihood ratio test (ELR) and exact likelihood ratio test against the alternative 
with two-component subpopulation (ELR2). In the second case, we consider the Durbin-Watson, 
Durbin h, Breusch-Godfrey, Box-Pierce and Ljung-Box tests of 1st order serial correlation and the 
runs test of randomness in two diff erent types of linear regression models.

Monte Carlo simulation, power study, homogeneity, autocorrelation

Regression analysis is a very popular tool in 
econometrics. Diagnostics of regression models 
is primarily focused on analysis of error terms 
and constitutes one of the most important 
steps in applied regression analysis. In cross-
sectional models, the error terms are typically 
heteroskedastic, while in time series regressions 
the errors are o� en aff ected by serial correlation. 
Therefore, this paper is primarily focused on testing 
homogeneity and incidence of serial correlation in 
error term. The aim of this paper is to present and 
discuss the power of the exact procedure for testing 
exponential homogeneity. In this case, we consider 
the exponential mixture with two-component 
subpopulation. Also, we explore a power in selected 
tests of autocorrelation in error term.

This paper is organized as follows. In the fi rst 
section, testing procedures for homogeneity and 
autocorrelation are introduced. In Section 2, 
simulation schemes are specifi ed. In Section 3, 
a comparative power study of serial correlation tests 

and exact likelihood ratio tests for homogeneity 
against the two-component subpopulation 
alternative are presented. The last sections are 
Conclusions and Summary.

Test introduction

Homogeneity tests
Currently, many homogeneity-testing procedures 

exist – for examples see Stehlík and Wagner (2011) 
and references therein. In this paper, we focus 
primarily on likelihood ratio tests. The exact 
likelihood ratio test for scale and homogeneity 
in complete sample from gamma family was 
derived in Stehlík (2003). The exact distribution 
of the likelihood ratio test for homogeneity was 
derived by Stehlík (2006) for the exponential 
and Weibull distributions. For the generalized 
gamma distribution, the exact distribution was 
derived by Stehlík (2008). Exact likelihood tests for 
homogeneity of the number of components in the 



1130 Luboš Střelec, Václav Adamec

Rayleigh mixture for k = 2 and k = 3 components 
were introduced in Stehlík and Ososkov (2003); 
for k = 2 in exponential mixture it was studied by 
Stehlík and Wagner (2011) and Střelec and Stehlík 
(2012a), and fi nally, for k = 2 in the Rayleigh family 
it was studied by Střelec and Stehlík (2012b). Firstly, 
we present exact likelihood ratio test (ELR) and 
exact likelihood ratio test against the alternative 
with two-component subpopulation (ELR2) used in 
a comparative power study. 

Let y1, …yN be independently distributed 
variables with exponential densities and unknown 
scale parameter θ. Then following Stehlík (2006, 
Theorem 3), the ELR test statistic −lnN(y) takes the 
following form
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where N(y) is the likelihood ratio. ELR2 is 
test constructed for testing homogeneity of 
k components in mixture of k = 2 components, fi rstly 
introduced by Stehlík and Ososkov (2003). They 
considered the testing problem in the form

H0 : k = 1 

vs. (2)

H1 : k = 2,

which can be, following Stehlík and Ososkov 
(2003), in the mixture model approximated by the 
hypothesis of the subpopulation model

H0 : θ1 = … = θN

vs. (3)

H1 : non empty disjoint subsets 
M1, M2, M1  M2 = {1, …, N},

where M1  M2 = , M1, M2  , j  M1 : θj = θ1, 
j  M2 : θj = θ2. Symbols θ1 and θ2 indicate scale 
parameters satisfying θ1  θ2. Note, that ELR2 test 
verifi es the hypothesis (3), which approximates the 
hypothesis (2). For more, see Stehlík and Ososkov 
(2003) and Stehlík and Wagner (2011).

Let y1, …yN be independently distributed 
variables with exponential densities and suppose 
that {yi1, …, yiK}, 0 < K < N are the observations from 
exponential distribution with scale parameter θ1. 
Other observations are distributed exponentially 
with scale parameter θ2; ik denotes indices {1, …, N} 
for 1 ≤ i ≤ K. Then following Stehlík and Ososkov 
(2003), the likelihood ratio takes the following form
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where P(K) for 0 < K < N denotes all partitions of 
{1, …, K} in two non-empty subsets.

Then ELR2 test statistic −lnN(y) has the following 
form
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where N(y) is given in (4). Following Stehlík and 
Wagner (2011, Lemma 3.1), ELR2 test statistic can be 
also determined as
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where Hmin can be obtained from sums of order 
statistics y(i)
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The ELR and ELR2 test statistics have some 
important properties, such as scale invariance, 
i.e. the distribution of the test statistic under H0 
is independent of the unknown scale parameter 
(see Stehlík, 2006, and Stehlík and Wagner, 2011), 
and it is optimal in the Bahadur sense (see Rublík, 
1989a, 1989b). Short overview of mentioned exact 
likelihood ratio tests is also given in Střelec and 
Stehlík (2012a).

Serial correlation tests
In Monte Carlo simulation study of power, the 

following tests of serial correlation were investigated: 
Durbin-Watson test (DW, Durbin and Watson, 1950), 
Durbin h-test (Dh, Greene, 2002), Breusch-Godfrey 
test in Lagrange multiplier (LM) and F-test variants 
(BG, Breusch, 1978), Box-Pierce test (BP, Box and 
Pierce, 1970), Ljung-Box test (LB, Ljung and Box, 
1978) and non-parametric runs test for randomness 
(RT, Geary, 1970). The mentioned tests were applied 
to detect 1st order serial correlation in error terms 
of a linear model. Use of two-tailed alternative 
hypothesis is presumed in Durbin-Watson and runs 
test.

Simulation procedures

Homogeneity tests
In this paper, following Stehlík and Wagner 

(2011), we consider tests for homogeneity against 
subpopulation models, where the number of 
subpopulations has to be specifi ed. Note, that the 
general subpopulation model assumes that each 
observation follows exponential distribution with 
some parameter and the joint density of the sample 
is given

   1
1

,..., exp
N

N i i i
i

f y y y 


  , (8)
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where θi  θj for i  j (for more detail see Stehlík 
and Wagner, 2011). Consequently, as Stehlík and 
Wagner (2011) state, the most popular alternative to 
homogeneity is the mixture model with exponential 
components. In this paper, we will present and 
discuss the power of the exact likelihood ratio 
homogeneity test of k components in the exponential 
mixture with k = 2 components only, introduced 
by Stehlík and Ososkov (2003). Note, that the joint 
density of a sample y1, …, yN of iid observations from 
a two-component mixture is

       1 1 1 2 2
1

,..., exp 1 exp
N

N i i
i

f y y p y p y   


       ,

 (9)

where p and 1 − p are weights of components, such 
that 0 < p < 1 (for more detail see Stehlík and Wagner, 
2011).

In this paper, we assume the following hypothesis

H0 : y1, …, yN  Exponential ()

vs. (10)

H1 : y1, …, yN

follow a mixture of distributions with two 
exponential components, i.e. we suppose a mixture 
of two exponential components with the probability 
density function 

       1 1 2 2exp 1 expf y p y p y        , (11)

where p and 1 − p are weights of components, such 
that 0 < p < 1.

A simulation study was performed to compare 
the power of the exact likelihood ratio test 
ELR and ELR2 for the following parameter set: 
θ1 = 1 and θ2  {1, 3, 5, 10}, component weights 
p  {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and sample 
size N  {20, 40, 60, 80, 100}. For the mentioned 
parameter sets, M = 10 000 samples were generated 
and the proportion of rejections in ELR and 
ELR2 tests were determined. Note that the ELR 
and ELR2 tests have non-standard asymptotic 
distribution, but its exact distribution can be 
simulated. Therefore, critical values of the ELR and 
ELR2 tests can be simply obtained by Monte Carlo 
simulation, i.e. we generated M = 100 000 samples 
of size N  {20, 40, 60, 80, 100} from the standard 
exponential distribution, then computed the test 
statistic from each sample and fi nally determined 
the critical values c1−.

Serial correlation tests
Recall, that generally, power of statistical test 

is defi ned as the probability of rejecting the null 
hypothesis (H0) on the condition that H0 is false. 
Independent samples of time series innovations 
ut of length N  {20, 40, 60, 80, 100} were generated 
from standard normal distribution N(0,1). Serially 

correlated errors were constructed therefrom 
by means of AR(1) relationship t = 1t−1 + ut for 
t = 1, 2, 3, …, T and 1  <−1, 1> via a recursive fi lter 
using selected levels of positive autocorrelation 
coeffi  cients 1  {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, 0.99}. Generated auto-correlated errors were 
supplied to a linear regression model with level 
constant

yt = 0 + 1xt + t (model with fi xed time trend), (12)

yt = 0 + 1xt−1 + t (1st order autoregressive model),
 (13)

where regression parameters used in the simulation 
were  = (0.3, − 0.7). Nonzero intercept in regression 
models is required by some serial correlation tests. 
Negative slope in dynamic regression models is 
expected to aid detection of autocorrelated errors. 
Following OLS estimation of regression coeffi  cients 
from the generated bivariate data, 1st order serial 
correlation tests with two-tailed H1, where relevant, 
were applied to errors from the estimated linear 
models. Corresponding p-values were stored. For 
every combination of sample size N, autocorrelation 
coeffi  cient ρ1 and regression model, M = 10 000 
replicated samples were generated and analyzed. 
The power of autocorrelation test was estimated by 
relative proportion of tests rejecting H0 from the 
total of M replications ( = 0.05).

Power simulations were performed with R 
so� ware (www.r-project.org) and extension libraries 
car, lmtest and lattice, following a general framework 
for Monte Carlo simulation in R-language presented 
by Kleiber and Zeileis (2008). Results were presented 
in tabular form.

RESULTS AND DISCUSSION

Homogeneity tests
Tab. I presents simulated size of the ELR and ELR2 

test statistic for  = 0.05. Presented simulation results 
are based on simulated critical values derived from 
M = 100 000 samples of size N  {20, 40, 60, 80, 100} 
from the standard exponential distribution. It is 
obvious that ELR and ELR2 tests hold the chosen 
size  = 0.05 even for small samples.

Power of exact likelihood ratio tests ELR and ELR2 
against mixture of two exponential components 
with probability density function

f(y) = pθ1 exp(−θ1y) + (1 − p)θ2 exp(−θ2y)

for parameters levels mentioned above is reported in 
Tab. II.

As it can be seen from Tab. II, the power of 
the ELR and ELR2 tests increases with scale 
parameter θ2, e.g. the power of the ELR test against 
mixture of two exponential components for N = 100 
and component weight p = 0.30 is 0.494 for θ2 = 3, 
it is 0.932 for θ2 = 5, and fi nally, 1.000 for θ2 = 10. 
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For fi xed θ2, the highest power is predominantly 
obtained for component weight p = 0.40. The highest 

diff erence in power of ELR and ELR2 tests against 
mixture of two exponential components is for θ2 = 5, 

I: Simulated size of the ELR and ELR2 tests for  = 0.05

parameter N test
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ1 = 1
θ2 = 1

20
ELR 0.052 0.047 0.048 0.048 0.050 0.045 0.046 0.048 0.049

ELR2 0.050 0.048 0.048 0.046 0.049 0.043 0.049 0.048 0.052

40
ELR 0.052 0.048 0.049 0.053 0.053 0.052 0.057 0.049 0.045

ELR2 0.053 0.049 0.048 0.050 0.052 0.052 0.053 0.049 0.045

60
ELR 0.050 0.049 0.049 0.049 0.053 0.054 0.055 0.050 0.047

ELR2 0.052 0.048 0.050 0.052 0.051 0.054 0.056 0.050 0.049

80
ELR 0.052 0.051 0.047 0.048 0.048 0.047 0.051 0.047 0.050

ELR2 0.052 0.055 0.047 0.048 0.048 0.049 0.048 0.047 0.051

100
ELR 0.054 0.052 0.055 0.049 0.051 0.050 0.046 0.050 0.053

ELR2 0.053 0.049 0.054 0.047 0.052 0.049 0.050 0.052 0.055

II: Power of the ELR and ELR2 tests against mixture of two exponential components for  = 0.05, 1 = 1, 2  {3, 5, 10}

parameter N test
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ2 = 3

20
ELR 0.118 0.168 0.180 0.195 0.182 0.160 0.131 0.097 0.076

ELR2 0.106 0.154 0.170 0.190 0.184 0.160 0.135 0.099 0.080

40
ELR 0.148 0.234 0.283 0.291 0.275 0.245 0.191 0.142 0.087

ELR2 0.129 0.213 0.261 0.286 0.275 0.255 0.200 0.150 0.093

60
ELR 0.181 0.289 0.365 0.382 0.365 0.323 0.249 0.168 0.105

ELR2 0.159 0.266 0.347 0.374 0.370 0.332 0.264 0.179 0.112

80
ELR 0.208 0.345 0.424 0.450 0.446 0.379 0.299 0.201 0.111

ELR2 0.179 0.310 0.406 0.446 0.453 0.393 0.322 0.211 0.119

100
ELR 0.230 0.392 0.494 0.520 0.509 0.441 0.343 0.228 0.124

ELR2 0.199 0.355 0.460 0.515 0.525 0.462 0.364 0.246 0.132

θ2 = 5

20
ELR 0.247 0.360 0.430 0.435 0.408 0.355 0.273 0.171 0.100

ELR2 0.221 0.347 0.427 0.451 0.439 0.381 0.293 0.191 0.105

40
ELR 0.351 0.551 0.649 0.679 0.646 0.559 0.435 0.285 0.145

ELR2 0.303 0.522 0.646 0.694 0.679 0.602 0.476 0.310 0.151

60
ELR 0.450 0.697 0.794 0.820 0.796 0.725 0.582 0.370 0.176

ELR2 0.386 0.666 0.789 0.833 0.821 0.773 0.630 0.408 0.189

80
ELR 0.523 0.781 0.880 0.900 0.880 0.824 0.684 0.454 0.197

ELR2 0.455 0.750 0.875 0.911 0.904 0.863 0.739 0.499 0.213

100
ELR 0.598 0.856 0.932 0.948 0.939 0.888 0.776 0.524 0.233

ELR2 0.525 0.830 0.928 0.956 0.956 0.923 0.822 0.581 0.252

θ2 = 10

20
ELR 0.520 0.728 0.809 0.828 0.806 0.720 0.563 0.354 0.157

ELR2 0.492 0.722 0.824 0.859 0.842 0.774 0.625 0.379 0.167

40
ELR 0.733 0.923 0.966 0.975 0.971 0.941 0.838 0.582 0.251

ELR2 0.695 0.921 0.973 0.981 0.984 0.963 0.886 0.632 0.260

60
ELR 0.852 0.980 0.996 0.999 0.996 0.990 0.946 0.757 0.329

ELR2 0.817 0.980 0.997 0.999 0.998 0.996 0.968 0.800 0.337

80
ELR 0.922 0.995 0.999 1.000 1.000 0.998 0.983 0.850 0.398

ELR2 0.898 0.993 1.000 1.000 1.000 1.000 0.991 0.891 0.415

100
ELR 0.959 0.998 1.000 1.000 1.000 1.000 0.996 0.924 0.473

ELR2 0.938 0.998 1.000 1.000 1.000 1.000 0.999 0.949 0.482
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N = 100 and p = 0.10, where ELR test has power 0.598 
and ELR2 test has power only 0.525, i.e. diff erence 
in power is 0.073. It is evident from Tab. II, that ELR 
test is more powerful than ELR2 test, especially, for 
small components weight p (in most cases for p < 0.5) 
and the ELR2 test is more powerful for components 
weight p ≥ 0.5.

Serial correlation tests
Simulated power of 1st order serial correlation 

tests in fi xed-eff ect linear regression obtained from 
M = 10 000 replications can be found in Tab. III for 
sample size N  {20, 40, 60, 80, 100} and positive ρ1. 
It is apparent that power increases with sample size 
and magnitude of the autocorrelation coeffi  cient in 
all tests under exploration. Durbin-Watson test with 
two-sided H1 appears to be the most powerful test 
in detecting serial correlations among all tests and 
sample size N in this study. If applied with the right-
tailed alternative, its power further exceeds the two-

tailed test by 0.02 to 0.12 (results not shown). Power 
of DW test is suffi  cient for ρ1 ≥ 0.5 and N ≥ 40.

DW test is followed closely by Ljung-Box test, 
known to have superiority to other tests in terms of 
power, especially in small samples (Gujarati, 2004). 
BG and BP tests have similar power. Among the 
tests under scrutiny, Geary’s runs test has the lowest 
power, particularly for small samples (N = 20), 
although its power rises with sample size and 
reaches comparable levels with other tests for ρ1 ≥ 0.4 
and N ≥ 100. The non-parametric runs test does not 
make assumptions about distribution of the errors. 
Durbin h-test cannot be used in regressions lacking 
autoregressive term.

For ρ1 = 0, the simulated power oscillates around 
p = 0.05 in all tests. It represents empirically 
estimated size of the statistical tests.

Simulated power of autocorrelation tests obtained 
from error terms from 1st order autoregressive 
model fi tted to generated samples of size 

III: Power of general serial correlation tests in fi xed eff ect linear regression models ( = 0.05)

N test
autocorrelation coeffi  cient ρ1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

20

DW 0.051 0.068 0.116 0.197 0.310 0.443 0.570 0.689 0.767 0.827 0.853

BG_LM 0.056 0.039 0.041 0.075 0.138 0.228 0.346 0.468 0.571 0.657 0.692

BG_F 0.044 0.030 0.031 0.060 0.118 0.201 0.315 0.436 0.541 0.629 0.667

LB 0.072 0.049 0.054 0.092 0.161 0.257 0.371 0.496 0.594 0.673 0.706

BP 0.049 0.034 0.034 0.064 0.120 0.206 0.316 0.437 0.536 0.620 0.653

RT 0.036 0.036 0.049 0.074 0.113 0.170 0.232 0.323 0.395 0.471 0.506

40

DW 0.050 0.089 0.216 0.419 0.640 0.810 0.920 0.973 0.990 0.997 0.998

BG_LM 0.052 0.054 0.127 0.289 0.503 0.710 0.868 0.946 0.980 0.992 0.996

BG_F 0.046 0.049 0.118 0.272 0.488 0.698 0.861 0.942 0.978 0.992 0.995

LB 0.059 0.058 0.137 0.304 0.519 0.723 0.875 0.950 0.981 0.993 0.996

BP 0.048 0.051 0.120 0.277 0.490 0.700 0.862 0.941 0.978 0.991 0.995

RT 0.044 0.048 0.082 0.161 0.266 0.417 0.590 0.736 0.843 0.911 0.944

60

DW 0.050 0.114 0.322 0.589 0.828 0.949 0.991 0.999 1.000 1.000 1.000

BG_LM 0.053 0.071 0.226 0.478 0.756 0.917 0.982 0.996 0.999 1.000 1.000

BG_F 0.050 0.067 0.218 0.466 0.747 0.914 0.980 0.996 0.999 1.000 1.000

LB 0.058 0.075 0.235 0.489 0.765 0.920 0.984 0.997 0.999 1.000 1.000

BP 0.051 0.068 0.220 0.471 0.750 0.914 0.981 0.996 0.999 1.000 1.000

RT 0.046 0.070 0.150 0.280 0.464 0.660 0.826 0.923 0.974 0.992 0.996

80

DW 0.051 0.139 0.409 0.726 0.932 0.988 0.999 1.000 1.000 1.000 1.000

BG_LM 0.056 0.096 0.317 0.642 0.892 0.981 0.998 1.000 1.000 1.000 1.000

BG_F 0.054 0.093 0.310 0.634 0.888 0.980 0.998 1.000 1.000 1.000 1.000

LB 0.059 0.100 0.324 0.651 0.897 0.982 0.998 1.000 1.000 1.000 1.000

BP 0.055 0.094 0.312 0.636 0.890 0.980 0.998 1.000 1.000 1.000 1.000

RT 0.050 0.085 0.186 0.373 0.613 0.799 0.923 0.980 0.996 0.999 1.000

100

DW 0.050 0.164 0.492 0.826 0.969 0.997 1.000 1.000 1.000 1.000 1.000

BG_LM 0.052 0.118 0.410 0.766 0.952 0.994 1.000 1.000 1.000 1.000 1.000

BG_F 0.050 0.114 0.406 0.761 0.950 0.994 1.000 1.000 1.000 1.000 1.000

LB 0.055 0.122 0.419 0.770 0.954 0.994 1.000 1.000 1.000 1.000 1.000

BP 0.052 0.116 0.406 0.763 0.950 0.994 1.000 1.000 1.000 1.000 1.000

RT 0.053 0.092 0.234 0.457 0.707 0.884 0.972 0.994 0.999 1.000 1.000
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N  {20, 40, 60, 80, 100} and positive levels of ρ1 is 
shown in Tab. IV.

Simulated power in autoregressive models is 
considerably lower, when compared to fi xed eff ects 
regressions for all combinations of sample size N 
and autocorrelation parameter ρ1. Durbin-Watson 
test performs quite poorly in dynamic models 
relative to DW application to fi xed eff ect regressions, 
and also, compared to other serial correlation tests. 
This observation is caused by toward zero bias of the 
DW test in models with lagged stochastic response 
in position of the regresor (Greene, 2002).

Power of Durbin h-test was obtained from 
complete test runs. Due to construction of the test 

statistic, Durbin h-test sometimes fails to produce 
observed value of the statistic, when variance 
of autoregressive parameter Var(̂A) equals to or 
exceeds 1/N. In consequence, the Durbin h-test falls 
short of producing a conclusive result and it cannot 
be applied, despite otherwise having superior 
power. In its place, Lagrange multiplier serial 
correlation test (BG) is proposed (Gujarati, 2004). 
LM test displays the largest power, when applied 
to errors from autoregressive models for simulated 
sample size N and serial correlations ρ1. Its power 
is suffi  cient for serial correlations ρ1 ≥ 0.5 and 
sample size N ≥ 60. F-variant of the BG test follows 
with slightly smaller power. Superior power of the 

IV: Power of general serial correlation tests in dynamic linear regression models ( = 0.05) 

N test
autocorrelation coeffi  cient ρ1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

20

DW 0.010 0.006 0.005 0.002 0.004 0.004 0.004 0.003 0.002 0.003 0.040

Dh 0.121 0.106 0.115 0.150 0.203 0.269 0.347 0.388 0.475 0.531 0.630

BG_LM 0.063 0.043 0.039 0.045 0.068 0.095 0.136 0.183 0.232 0.283 0.423

BG_F 0.050 0.035 0.030 0.037 0.056 0.083 0.119 0.160 0.207 0.258 0.393

LB 0.008 0.005 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.007 0.088

BP 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.003 0.065

RT 0.016 0.018 0.018 0.025 0.027 0.029 0.030 0.027 0.031 0.039 0.075

40

DW 0.004 0.004 0.005 0.009 0.011 0.010 0.008 0.005 0.010 0.085 0.389

Dh 0.068 0.073 0.122 0.231 0.390 0.542 0.703 0.818 0.879 0.931 0.950

BG_LM 0.051 0.046 0.067 0.138 0.242 0.355 0.495 0.596 0.690 0.793 0.884

BG_F 0.045 0.041 0.061 0.128 0.226 0.341 0.480 0.583 0.678 0.784 0.879

LB 0.004 0.003 0.003 0.005 0.008 0.006 0.005 0.003 0.015 0.127 0.466

BP 0.003 0.002 0.002 0.004 0.006 0.004 0.003 0.002 0.012 0.110 0.444

RT 0.020 0.020 0.023 0.034 0.037 0.041 0.038 0.041 0.045 0.090 0.237

60

DW 0.006 0.005 0.009 0.014 0.016 0.019 0.014 0.008 0.032 0.277 0.717

Dh 0.061 0.068 0.151 0.306 0.546 0.747 0.888 0.945 0.981 0.992 0.995

BG_LM 0.052 0.054 0.114 0.236 0.420 0.595 0.737 0.810 0.886 0.944 0.980

BG_F 0.050 0.052 0.109 0.228 0.409 0.585 0.730 0.804 0.883 0.943 0.979

LB 0.006 0.004 0.007 0.010 0.012 0.014 0.009 0.005 0.048 0.336 0.766

BP 0.005 0.003 0.006 0.008 0.009 0.011 0.007 0.004 0.041 0.319 0.754

RT 0.022 0.032 0.040 0.052 0.064 0.062 0.057 0.051 0.068 0.180 0.467

80

DW 0.008 0.006 0.014 0.025 0.031 0.033 0.022 0.009 0.056 0.468 0.891

Dh 0.057 0.074 0.187 0.395 0.670 0.863 0.959 0.988 0.997 0.999 0.999

BG_LM 0.052 0.063 0.159 0.337 0.577 0.770 0.875 0.907 0.946 0.983 0.995

BG_F 0.050 0.060 0.154 0.330 0.570 0.764 0.871 0.905 0.945 0.983 0.994

LB 0.006 0.005 0.010 0.021 0.024 0.024 0.016 0.007 0.075 0.523 0.910

BP 0.006 0.004 0.009 0.018 0.021 0.021 0.014 0.006 0.068 0.508 0.905

RT 0.026 0.032 0.049 0.065 0.081 0.080 0.070 0.057 0.088 0.286 0.664

100

DW 0.007 0.006 0.020 0.035 0.051 0.048 0.026 0.010 0.093 0.627 0.960

Dh 0.056 0.078 0.227 0.491 0.765 0.928 0.987 0.997 1.000 1.000 1.000

BG_LM 0.052 0.070 0.206 0.440 0.704 0.875 0.935 0.946 0.970 0.992 0.999

BG_F 0.051 0.067 0.202 0.434 0.699 0.873 0.934 0.944 0.970 0.992 0.999

LB 0.006 0.004 0.017 0.031 0.043 0.039 0.021 0.010 0.117 0.667 0.966

BP 0.006 0.004 0.015 0.028 0.038 0.036 0.019 0.008 0.111 0.658 0.965

RT 0.030 0.035 0.053 0.069 0.088 0.088 0.075 0.062 0.103 0.365 0.798
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LM serial correlation test in dynamic regression 
models can be attributed to its test statistic capable 
of detecting correlation between current and 
lagged errors (Greene, 2002). The remaining 
autocorrelation tests have inferior properties and 
cannot be used to detect serial correlations in errors 
from the dynamic regressions. Evidently, stochastic 
regressor present in the dynamic models has 
unfavourable impact on usability of these tests.

CONCLUSIONS
As it can be seen from results of homogeneity 

testing presented above, the power of test ELR 
and ELR2 is comparable. Maximum diff erence 
in power (0.073) between ELR and ELR2 tests is 
for the exponential mixture with the following 
parameters: θ2 = 5, N = 100 and p = 0.10. Similarly, 
the ELR test is more powerful for small component 
weights (p < 0.5) and the ELR2 test is more powerful 
for higher component weights (p ≥ 0.5). Note, 
that small component weights, e.g. p = 0.1, mean 

that the density of the second component with 
parameter θ2 > θ1 is predominant. Stehlík and 
Wagner (2011) state that this contamination is easier 
to detect than contamination with high component 
weight, e.g. p = 0.9, where the fi rst component with 
parameter θ1 = 1 is predominant. The reason is that 
overdispersion measured by the squared coeffi  cient 
of variation is higher in case of contamination with 
high component weight.

Monte Carlo simulation confi rmed that in 
linear regression models with fi xed eff ect terms, 
Durbin-Watson is the most powerful test of serial 
correlation followed by LB, BG and BP tests for 
ρ1 ≥ 0.5 and sample size N ≥ 40. Geary’s runs test had 
the lowest power. Power simulations established 
that Durbin h-test has the largest power to detect 1st 
order autocorrelation in errors from autoregressive 
models. Due to limitations of the test statistic, the 
use of BG test in LM and F-test variants is suggested 
with suffi  cient power for medium or large serial 
correlations ρ1 ≥ 0.5 and sample size N ≥ 60.

SUMMARY
In this study, we presented and discussed the power of homogeneity and frequented serial correlation 
tests. For the fi rst case, we considered exact likelihood ratio test (ELR) and exact likelihood ratio test 
against the alternative with two-component subpopulation (ELR2). In the second case, we considered 
the Durbin-Watson, Durbin h, Breusch-Godfrey, Box-Pierce and Ljung-Box tests of 1st order serial 
correlation and Geary’s runs test of randomness in diff erent types of linear regression models.
For the purpose of power comparison of exact likelihood ratio tests for homogeneity, we generated 
M = 100 000 samples of size N  {20, 40, 60, 80, 100} from the standard exponential distribution, 
then we computed the test statistic from each sample and fi nally determined the critical values c1−. 
Then we simulated the size and power of the ELR and ELR2 tests against mixture of two exponential 
components with various parameter settings. For this purpose, M = 10 000 samples were generated 
and the proportion of rejections of ELR and ELR2 tests was determined. We can conclude that power 
of ELR and ELR2 tests is comparable for all analysed alternatives. Only small diff erences exist for 
various component weights p. The ELR test is more powerful for small component weights (p < 0.5) 
and the ELR2 test is more powerful for higher component weights (p ≥ 0.5).
To assess the power of serial correlation tests, M = 10 000 bivariate samples of varying sample size 
and level of positive autocorrelation were generated and analysed in fi xed eff ect and stochastic 
autoregressive models. Estimated power of seven serial correlation tests was obtained from error 
terms of the models. Durbin-Watson and Ljung-Box tests displayed largest power in regression model 
with fi xed eff ects only. Durbin h and Breusch-Godfrey tests in LM and F-test variants were in general 
the most powerful, when applied to autoregressive models.
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