Acta Univ. Agric. Silvic. Mendelianae Brun. 2012, 60(3), 101-110 | DOI: 10.11118/actaun201260030101

Optical indicators of plant physiological activity

Daniel Kováč1, Alexander Ač2, Ladislav Šigut2, Karel Klem2, Otmar Urban2
1 Ústav ekologie lesa, Mendelova zemědělská a lesnická univerzita, Zemědělská 1, 613 00 Brno, Česká republika
2 Centrum výzkumu globální změny AV ČR, v. v. i., Bělidla 4a, 603 00 Brno, Česká republika

Retrieving information on the plant physiological status from spectral reflectance is a challenging task in many ways. The easiest way to get the information is through normalized vegetation indices, that are based on a normalization of reflectance in specific wavebands. Beside the most common spectral indices such as Photochemical Reflectance Index PRI or Normalized Difference Vegetation Index NDVI, several new indices has been proposed during the past decade as potential physiological indicators. In this paper, the performance of several of them for determining the physiological status of the foliage is evaluated on an experimental Norway spruce needles (Picea abies (L.) Karst) plot. Four needle classess of 27 years old spruce have been sampled throughout cloudy and sunny day. Needle classes were represented by the needles of the branchlets of the 4th, 7th, 9th and 12th whorls. Study was conducted on one-year old needles and sampling ran over several times a day to separate influence of dynamic processess on parameters. Results show that the ratio of reflectance in the green and red region (presented as ratio of reflectance at 560 nm and 694 nm) outperforms the others examinated vegetation indices, and suggest that it would be best suited for the characterization of the leaf status. Being always the highest in the uppermost part of the crown and the lowest in shaded part of the crown, parameter is strictly stratificated throughout the crown. Furthermore, parameter values correspond with intensity of physiological processess ongoing in needles during midday. The values of the other indicators seem to be affected by leaf pigment content and morphology too much. Neither PRI nor NDVI were able to distinguish differences in needle properties sufficiently.

Keywords: Picea abies, reflectance, vegetation indices, photosynthesis, ecophysiology
Grants and funding:

This work is part of the research supported by the grant ForChange (SP/2D1/70/08, Ministry of Environment of the Czech Republic), by the European Commission (project CzechGlobe - contract CZ.1.05/1.1.00/02.0073), and by the project IGA 13543641354/2055 (MENDELU).

Received: September 9, 2011; Published: August 28, 2013  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kováč, D., Ač, A., Šigut, L., Klem, K., & Urban, O. (2012). Optical indicators of plant physiological activity. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis60(3), 101-110. doi: 10.11118/actaun201260030101
Download citation

References

  1. ASNER, G. P., 1998: Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64: 234-253. DOI: 10.1016/S0034-4257(98)00014-5 Go to original source...
  2. BALDOCCHI, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9: 479-492. DOI: 10.1046/j.1365-2486.2003.00629.x Go to original source...
  3. BATTLE, M. et al., 2000: Global carbon sinks and their variability inferred from atmospheric O-2 and delta C-13. Science, 287: 2467-2470. DOI: 10.1126/science.287.5462.2467 Go to original source...
  4. DAUGHTRY, C. S. T, RANSON, K. J., BIEHL, L. L., 1989: A new technique to measure the spectral properties of conifer needles. Remote Sensing of Environment, 27: 81-91. DOI: 10.1016/0034-4257(89)90039-4 Go to original source...
  5. DEMMIG-ADAMS, B., ADAMS, W. W., 1996: Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species. Planta, 198: 460-470. DOI: 10.1007/BF00620064 Go to original source...
  6. DROLET, G. G. et al., 2005: A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest. Remote Sensing of Environment, 98: 212-224. DOI: 10.1016/j.rse.2005.07.006 Go to original source...
  7. FÄRBER, A., JAHNS, P., 1998: The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. Biochimica Et Biophysica Acta-Bioenergetics, 1363: 47-58. DOI: 10.1016/S0005-2728(97)00093-5 Go to original source...
  8. FILELLA, I., PEĖUELAS, J., LLORENS, L., ESTIARTE, M., 2004: Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sensing of Environment, 90: 308-318. DOI: 10.1016/j.rse.2004.01.010 Go to original source...
  9. FUENTES, D. A. et al., 2006: Mapping carbon and water vapor fluxes in a chaparral ecosystem using vegetation indices derived from AVIRIS. Remote Sensing of Environment, 103: 312-323. DOI: 10.1016/j.rse.2005.10.028 Go to original source...
  10. GAMON, J. A. et al., 1995: Relationships between NDVI, canopy structure, and photosynthesis in 3 californian vegetation types. Ecological Applications, 5: 28-41. DOI: 10.2307/1942049 Go to original source...
  11. GAMON, J. A., PEĖUELAS, J., FIELD, C. B., 1992: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41: 35-44. DOI: 10.1016/0034-4257(92)90059-S Go to original source...
  12. GAMON, J. A., SERRANO, L., SURFUS, J. S., 1997: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112: 492-501. DOI: 10.1007/s004420050337 Go to original source...
  13. GILMORE, A. M., BJÖRKMAN, O., 1994: Adenine-nucleoides and the xantophyll cycle in leaves. Comparison of the effect of CO2- and temperature- limited photosynthesis on photosystem-II fluorescence quenching, the adenylate energy charge and violaxanthin de-epoxidation in cotton. Planta, 192: 537-544. DOI: 10.1007/BF00203592 Go to original source...
  14. GRACE, J., NICHOL, C., DISNEY, M., LEWIS, P., QUAIFE, T., BOWYER, P., 2007: Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Global Change Biology, 13: 1484-1497. DOI: 10.1111/j.1365-2486.2007.01352.x Go to original source...
  15. HALL, F. G. et al., 2008: Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Remote Sensing of Environment, 112: 3201-3211. DOI: 10.1016/j.rse.2008.03.015 Go to original source...
  16. HILKER, T. et al., 2010: Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling. Remote Sensing of Environment, 114: 2863-2874. DOI: 10.1016/j.rse.2010.07.004 Go to original source...
  17. HILKER, T., NESIC, Z., COOPS, N. C., LESSARD, D., 2009: A new, automated, multiangular radiometer instrument for tower-based observations of canopy reflectance (AMSPEC II). Instrumentation Science & Technology, 38: 319-340. DOI: 10.1080/10739149.2010.508357 Go to original source...
  18. INOUE, Y., PEĖUELAS, J., MIYATA, A., MANO, M., 2008: Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sensing of Environment, 112: 156-172. DOI: 10.1016/j.rse.2007.04.011 Go to original source...
  19. JACQUEMOUD, S., BARET, F., 1990: PROSPECT - A model of leaf optical-properties spectra. Remote Sensing of Environment, 34: 75-91. DOI: 10.1016/0034-4257(90)90100-Z Go to original source...
  20. KALINA, J., SLOVÁK, V., 2004: The inexpensive tool for the determination of projected leaf area. Ekologia-Bratislava, 23: 163-167.
  21. KURASOVÁ, I., KALINA, J., URBAN, O., ŠTROCH, M., ŠPUNDA, V., 2003: Acclimation of two distinct plant species, spring barley and Norway spruce, to combined effect of various irradiance and CO2 concentration during cultivation in controlled environment. Photosynthetica, 41: 513-523. DOI: 10.1023/B:PHOT.0000027515.05641.fd Go to original source...
  22. LICHTENTHALER, H. K., 1987: Chlorophylls and carotenoids - pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382. DOI: 10.1016/0076-6879(87)48036-1 Go to original source...
  23. LICHTENTHALER, H. K., GITELSON, A., LANG, M., 1996: Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of Plant Physiology, 148: 483-493. DOI: 10.1016/S0176-1617(96)80283-5 Go to original source...
  24. MALENOVSKÝ, Z. et al., 2006, Applicability of the PROSPECT model for Norway spruce needles. International Journal of Remote Sensing, 27: 5315-5340. Go to original source...
  25. MORAN, J. A., MITCHELL, A. K., GOODMANSON, G., STOCKBURGER, K. A., 2000: Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiology, 20: 1113-1120. DOI: 10.1093/treephys/20.16.1113 Go to original source...
  26. MYNENI, R. B., WILLIAMS, D. L., 1994: On the relationship between fAPAR and NDVI. Remote Sensing of Environment, 49: 200-211. DOI: 10.1016/0034-4257(94)90016-7 Go to original source...
  27. NAKAJI, T., OGUMA, H., FUJINUMA, Y., 2006: Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles. International Journal of Remote Sensing, 27: 493-509. DOI: 10.1080/01431160500329528 Go to original source...
  28. NICHOL, C. J. et al., 2002: Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus Series B-Chemical and Physical Meteorology, 54: 677-687. DOI: 10.1034/j.1600-0889.2002.01347.x Go to original source...
  29. PEÑUELAS, J., FILELLA, I., GAMON, J. A., 1995: Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytologist, 131: 291-296. DOI: 10.1111/j.1469-8137.1995.tb03064.x Go to original source...
  30. R DEVELOPMENT CORE TEAM, 2010: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
  31. RAHMAN, A. F., CORDOVA, V. D., GAMON, J. A., SCHMID, H. P., SIMS, D. A., 2004: Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: A novel approach. Geophysical Research Letters, 31: 4. DOI: 10.1029/2004GL019778 Go to original source...
  32. RAHMAN, A. F., GAMON, J. A., FUENTES, D. A., ROBERTS, D. A., PRENTISS, D., 2001: Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. Journal of Geophysical Research-Atmospheres, 106: 33579-33591. Go to original source...
  33. RANDERSON, J. T., ENTING, I. G., SCHUUR, E. A. G., CALDEIRA, K., FUNG, I. Y., 2002: Seasonal and latitudinal variability of troposphere Delta(CO2)-C-14: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles, 16: 19. Go to original source...
  34. SIMS, D. A., GAMON, J. A., 2002: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81: 337-354. DOI: 10.1016/S0034-4257(02)00010-X Go to original source...
  35. STYLINSKI, C. D., GAMON, J. A., OECHEL, W. C., 2002: Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia, 131: 366-374. Go to original source...
  36. URBAN, O. et al., 2007: Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13: 157-168. DOI: 10.1111/j.1365-2486.2006.01265.x Go to original source...
  37. VIÑA, A., GITELSON, A. A., 2005: New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophysical Research Letters, 32: 4. Go to original source...
  38. XIAO, X. M., BRASWELL, B., ZHANG, Q. Y., BOLES, S., FROLKING, S., MOORE, B., 2003: Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sensing of Environment, 84: 385-392. DOI: 10.1016/S0034-4257(02)00129-3 Go to original source...
  39. XIAO, X. M. et al., 2004: Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89: 519-534. DOI: 10.1016/j.rse.2003.11.008 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.