Acta Univ. Agric. Silvic. Mendelianae Brun. 2011, 59(7), 245-248 | DOI: 10.11118/actaun201159070245
Summation comparison theorems for half-linear second order difference equations on finite interval
- Ústav matematiky, Mendelova univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká republika
In the paper, new comparison theorems for the half-linear difference equation
Δ(RkΦ(Δzk)) + CkΦ(zk+1) = 0, Φ(u) = |u|p-2 u, p > 1,
are derived. We show that if a solution of this equation has a generalized zero on the discrete interval [a, b], then the same holds for a solution of its majorant. The main tool used in the paper is the variational technique which relates nonexistence of a solution with a generalized zero with nonegativity of the p-degree functional defined on the suitable class of admissible functions.
Keywords: difference equation, second order, focal point, half-linear equation, p-degree functional, free end point
Grants and funding:
Author is supported by the Grant P201/10/1032 of the Czech Science Foundation.
Received: May 16, 2011; Published: January 26, 2014 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- DOŠLÝ, O., FIŠNAROVÁ, S., 2008: Linearized Riccati technique and (non-)oscillation criteria for half-linear difference equations, Adv. Difference Equ. 438130: 1-18. ISSN 1687-1839. DOI: 10.1155/2008/438130
Go to original source...
- DOŠLÝ, O., FIŠNAROVÁ, S., 2009: Perturbation principle in discrete half-linear oscillation theory, Stud. Univ. Žilina, Math. Ser. 23: 19-28. ISSN 1336-149X.
- DOŠLÝ, O., FIŠNAROVÁ, S., 2011: Variational technique and principal solution in half-linear oscillation criteria, Appl. Math. Comp. 217: 5385-5391. ISSN 0096-3003. DOI: 10.1016/j.amc.2010.12.006
Go to original source...
- DOŠLÝ, O., ŘEHÁK, P., 2005: Half-linear Differential Equations, North-Holland Mathematics Studies 202, Amsterdam: Elsevier Science. ISBN 0444520392.
- ELBERT, Á., SCHNEIDER, A., 2000: Perturbations of the half-linear Euler differential equation, Results Math. 37: 56-83. ISSN 1422-6383. DOI: 10.1007/BF03322512
Go to original source...
- HILSCHER, R., ZEIDAN, V., 2002: Coupled intervals in the discrete calculus of variations: necessity and sufficiency, J. Math. Anal. Appl. 276: 396-421. ISSN 0022-247X. DOI: 10.1016/S0022-247X(02)00495-X
Go to original source...
- HILSCHER, R., ZEIDAN, V., 2004: Coupled intervals in the discrete optimal control, J. Difference Equ. Appl. 10 No. 2: 151-186. ISSN 1023-6198. DOI: 10.1080/1023619031000146841
Go to original source...
- HILSCHER, R., ZEIDAN, V., 2005: Nonnegativity and positivity of quadratic functionals in discrete calculus of variations: survey, J. Difference Equ. Appl. 11 No. 9: 857-875. ISSN 1023-6198. DOI: 10.1080/10236190500137454
Go to original source...
- LEIGHTON, W., 1983: Some oscillation theory, Z. Angew. Math. Mech. 63 No. 7: 303-315. ISSN 0044-2267. DOI: 10.1002/zamm.19830630708
Go to original source...
- MAŘÍK, R., 2000: Comparison theorems for half-linear second order difference equations, Arch. Math (Brno) 36: 513-518. ISSN 0044-8753.
- ŘEHÁK, P., 2001: Oscillatory properties of second order half-linear difference equations, Czechoslovak Math. J. 51 (126) No. 2: 303-321. ISSN 0011-4642. DOI: 10.1023/A:1013790713905
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.