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In the paper, new comparison theorems for the half-linear diff erence equation 

    1 0,k k k kR z C z      
   2 ,pu u u 

 >1,p

are derived. We show that if a solution of this equation has a generalized zero on the discrete 
interval [a, b], then the same holds for a solution of its majorant. The main tool used in the paper 
is the variational technique which relates nonexistence of a solution with a generalized zero with 
nonegativity of the p-degree functional defi ned on the suitable class of admissible functions. 

diff erence equation, second order, focal point, half-linear equation, p-degree functional, free end 
point 

1. INTRODUCTION
Consider the second order half-linear diff erence 

equation 

    1 0,k k k kR x C x        (1)

where Δ is the forward diff erence operator, {Ck}, 
{Rk} are real sequences, Rk ≠ 0 for k = 0,…,n + 1, and 
(u) = |u|p−2u, p > 1, is a power type nonlinearity. 
The study of equation (1) has been initiated in 
Řehák (2001) and the most important results are 
summarized in Chapter 8 of the monograph Došlý, 
Řehák (2005). 

Despite the lack of linearity, a constant multiple of 
any solution of (1) is also a solution and equation (1) 
has one half of linearity properties. It is well known 
that there is a close similarity between equation (1) 
and the linear second order diff erence equation. 

In particular, many results from oscillation theory 
of second order linear diff erence equations can be 
extended to (1). These oscillation and nonoscillation 
results are frequently based on a comparison of 
two equations on the infi nite interval. The aim of 
this paper is to derive comparison theorems which 
compare (1) with another half-linear diff erence 
equation 

    1 0k k k kr y c y        (2)

on a fi nite interval. 
First, let us recall the defi nition of a generalized 

zero, which is (from the point of view of the 
Sturmian comparison theory) a natural replacement 
for zeros of solutions to diff erential equations. 
Remark that, unless stated explicitly otherwise, 
under the interval [m, n] we actually mean the 
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discrete set {m,m + 1,…n}. In a similar way we work 
also with other intervals. 

Defi nition 1. The interval (m,m + 1] is said to contain 
a generalized zero of a solution x = {xk} of Eq. (1) if xm ≠ 0 
and Rmxmxm+1 ≤ 0. 

It is well known, see for example Řehák (2001) or 
Došlý, Řehák (2005), that equation (1) tends to have 
more generalized zeros than (2), if the inequalities 
Ri ≤ ri and Ci ≥ ci are satisfi ed. In contrast to the 
pointwise comparison we formulate our results 
more generally in terms of sums of the coeffi  cients 
Ci and ci. Our aim is to derive a discrete version of the 
following theorem due to Leighton. 

Theorem A (Leighton (1983), Theorem 1.1). Let p(t) 
and q(t) be piecewise continuous on [a, f] with q(x) ≥ 0 there, 
and suppose that 

    ,
x x

a a

q t dt p t dt 
 

;a x f   p(x) �≡ q(x)

holds. If equation 

u + q(t)u = 0

has a solution u(t) with the property that u(a) = u(f) = 0, 
u(x) > 0 on the interval of real numbers [a, f), a solution v(t) of 

v + q(t)v = 0

with v(a) > 0, v(a) ≤ 0 must have a zero on the interval of real 
numbers (a, f). 

Another aspect which makes our results diff erent 
from those published in the literature is that 
similarly as in Theorem A we compare two solutions 
which do not vanish at the le
  end point of the 
interval. As far as the author knows, the results are 
new even for the linear diference equation. 

The main tool used in the paper is the variational 
technique which relates equation (1) and the 
corresponding discrete scalar p-degree functional 

   0 1
0

,
n

p p p
k k k k

k
J A R C    



     A  (3)

defi ned on the class of nontrivial sequences   1

0

n
k k 

  
such that n+1 = 0. Note that since we aim to compare 
the solutions which do not vanish at the le
  end 
point of the interval, we drop the usual requirement 
0 = 0 from the defi nition of the admissible sequences 
for functional J and also include the term A|0|p. 
The relationship between the half-linear diff erence 
equation and the p-degree functional is established 
in the following theorem. 

Theorem B (Mařík (2000), Theorem 1). The 
following statements are equivalent: 

i) The solution x = {xk} of Eq. (1) given by 0
0

0

xR A
x

 
  
 

 has 
no generalized zero on (0,n + 1]. 

ii) Functional (3) is positive defi nite on the class of nontrivial 
sequences   1

0

n
k k  


 satisfying 1 0n  

The following result allows to compare two 
solutions of two diff erent equations and it is an 
immediate consequence of Theorem B. The crucial 
aspect of the proof of this theorem lies in the fact that 
the functional J vanishes for the sequence which 
solves equation (1) and satisfi es initial condition 
closely connected with the value a. 

Theorem C (Leighton type comparison theorem, 
Mařík (2000), Corollary 1). Let y = {yk} be a solution of 

Eq. (2), such that yn+1 = 0 ≠ y0 and a : 0
0

0

yr
y

 
  

 
. Let A be 

such that 

V (y) := (A− a)|y0|p +
n∑

k=0

[
(Rk − rk)|Δyk|p − (Ck − ck)|yk+1|p

]
≤ 0.

Then the solution x = {xk} of Eq. (1) given by 0
0

0

xR A
x

 
  
 

 

has a generalized zero on (0, n + 1], i.e., there exists i  (0, n] 
such that xi ≠ 0 and Rixixi+1 ≤ 0 holds. 

2. Main results
This section contains the main results of the 

paper. In the following theorem we prove that if 
the solution of half-linear diff erential equation 
(2) vanishes at the point n + 1, then the solution of 
the equation (1) with a suffi  ciently large coeffi  cient 
Ci has a generalized zero on (0, n + 1], if the initial 
diff erence is negative and not too large. However, 
the words “suffi  ciently large” are here in the integral 
sense as (4) shows. Hence the inequality Ci ≥ ci is not 
necessary for all i. 

Note the technical assumption on nonegativity 
of ci which assures that the solution which starts 
with positive initial value and nonpositive initial 
diff erence is nonincreasing. 

Theorem 1. Let rk > 0 on [0, n], ck ≥ 0 on [0, n − 1], 
c0 > 0. Let y be a solution of (2) on [0, n − 1] such that y0 ≥ y1 

> 0, yk > 0 on [0, n] and yn+1 = 0. Denote 0
0

0

ya r
y

 
  

 
. Let 

Rk ≤ rk on [0, n], C0 ≥ c0, A ≤ a and 

   0

01

0
p k

i i
i

y a A C c
y 

   
 

(4)

for k  [0, n − 1]. Then the solution z = {zk} of (1) given by the 

conditions z0 > 0, 0
0

0

zA R
z

 
  

 
 has a generalized zero on 

(0, n + 1], i.e., there exists i  [0, n] such that zi ≠ 0 and 
Rizizi+1 ≤ 0. 

Proof. From Rk ≤ rk we get 

     0 1
0

n
p p

k k k
k

V y A a y c C y 


   

Further, from (2) it follows 

     1 1
1 1

k k
k k k

k k

r cy y y
r r 

 

      

for k  [0, n − 1] and 
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(Δyk+1) < 0

for k  [0, n − 1]. Hence |yk+1|p is decreasing on [0, n]. 
Clearly there exists    ,  > 0, such that the intervals 
of real numbers Ik := (|yk|p − , |yk|p + )   +, k  [1, n], 
satisfy Ij  Ik =  for j ≠ k. In each Ik let us choose k, 
k  Ik    +, such that 

   1 1
p

k k k k k kc C y c C      for k  [0, n − 1]. (5)

Denote by  the least common multiple of 
denominators of k. Then the numbers k defi ned by 
k = k form a decreasing sequence for k  [1, n] and 
k   . Combining these computations with yn+1 = 0 
we obtain 

     
1

0 1
0

n
p p

k k k
k

V y A a y c C y





   

   
1

0 1
0

n
p

k k k
k

A a y c C 





   

   
1

0 1
0

1 n
p

k k k
k

A a y c C 







   

   
11

0
0 1

1 kn
p

k k
k i

A a y c C






 

   

Changing the order of summation we get 

     
1

0
1 0

1 ,
ip

k k
i k

V y A a y c C


  

   

where i is a well defi ned number from the discrete 
interval [0,n − 1]. More precisely, k denotes how 
many times the number k appears in the double sum 

11

0 1
kn

k i
k 

   . By (4), we obtain 

     
1

0
0

1 1

1
p

p

i

yV y A a y a A
y



 

   

 
   0

0 1
1

p
p yA a y A a

y
   

 
  1 1

0
1

.
p

p
p

y
y a A

y
 

 

Since (5) and C0 ≥ c0 imply 1 ≤ |y1|p, we have V (y) ≤ 0. 
Now the statement follows from Theorem C. 

There is a variant of Theorem 1 which is based 
on the nonegativity of slightly diff erent sum than 

(4). Namely, the coeffi  cient ck has the weight 1

1

k

k

R
r




 in 

this sum. To derive this modifi cation of Theorem 1 
we need the following Lemma 1. This lemma is 
proved in Mařík (2000), Corollary 3, as a corollary of 
Theorem B. However, the original version contains 
some misprints and for this reason we restate this 
lemma with a shorter proof than the proof presented 
in Mařík (2000). 

Lemma 1. Let y = {yk} be a solution of Eq. (2) on 

[0, n − 1], such that yn+1 = 0 ≠ y0 and 0
0

0

ya r
y

 
  

 
. Let A be 

such that 

Ṽ (y) :=
(
A−R0

r0
a
)
|y0|p−

n−1∑
k=0

{
Δ
(Rk

rk

)
rkΦ(Δyk)yk+1+

(
Ck−Rk+1

rk+1
ck

)
|yk+1|p

}
≤ 0.

Then the solution z = {zk} of Eq. (1) given by 

0
0

0

zR A
z

 
  
 

 has a generalized zero on (0, n + 1], i.e., there 

exists i [0, n] such that Rizizi+1 ≤ 0 holds. 
Proof. Let y = {yk} be a solution of (2) on [0, n − 1] 

which satisfi es yn+1 = 0 ≠ y0 and 0
0

0

ya r
y

 
  

 
. Then 

          1 1
k

k k k k k k k k k
k

RL y R y C y r y C y
r 

 
           

 

 
      1

1
1

k k
k k k k k k

k k

R Rr y r y C y
r r






 
          

 

 
    1

1
1

k k
k k k k k

k k

R Rr y y C c
r r






   
        

     
(6)

holds for k  [0, n − 1]. Using summation by parts we 
get

     1 1 1
0 0

n n
p

k k k k k k k
k k
y L y y R y C y  

 

     

   1 1 1 0 0 0 1
0

n
p p

n n n k k k k
k

R y y R y y R y C y   


         

Therefore in view of (6) and yn+1 = 0, clearly 

   0
0 0 1

00

n
p

k k
n

yJ y y A R y L y
y 



  
     

   


 
 

1
0

0 1
00

n
p

k k
n

RA a y y L y
r






 
   
 



 
1

0 1
0 1 1

00 1

n
p pk k

k k k k k k
k k k

R R RA a y r y y C c y
r r r




 
 

                     
       



 0.

and the statement follows from Theorem B.
Theorem 2. Let rk > 0 on [0, n], ck ≥ 0 on [0,n − 1], C0 > 

1

1

R
r c0, Δ k

k

R
r  ≤ 0. Let y = {yk} be a solution of (2) on [0, n − 1], 

such that y0 ≥ y1 > 0, yk > 0 on [0, n], yn+1 = 0. Suppose that 

A > 0

0

R
r a, 

0 0 1

01 0 1

0
p k

i
i i

i i

y R Ra A C c
y r r



 

   
      

   


for k  [0, n − 1]. Then the solution x = {xk} of (1) given by 

the condition x0 > 0, A = R0
0

0

x
x

 
 
 

 has a generalized zero 



248 R. Mařík

on [0, n + 1], i.e., there exists i  [0, n] such that xi ≠ 0 and 
Rixixi+1 ≤ 0. 

Proof. From the assumption Δ k

k

R
r  ≤ 0 we get 

 
1

0 1
0 1

00 1

n
p pk

k k k
k k

R RV y A a y C c y
r r





 

   
      
   



The remaining part of the proof is essentially 
similar to the proof of Theorem 1 where we replace 

V(y), a and ck by Ṽ(y), 0

0

R
r a and 1

1

k

k

R
r




ck, respectively. 

SUMMARY
The classical results in the comparison theory of half-linear diff erential and diff erence equations deal 
with the generalized zeros of solutions which vanish at the le
  end point of the interval. Focal points, 
i.e. generalized zeros of solutions which start with zero diff erence, can be considered as a natural 
continuation of this research. The results presented in this paper include focal points if we choose 
A = a = 0 in Theorems 1 and 2. 
Another companion of the conjugate point and the focal point is also the so called coupled point, the 
point associated with functional defi ned on another class of admissible functions, such as functional 
with free end points. Theory of discrete coupled points has been introduced in a series of papers by 
Hilscher and Zeidan, see Hilscher, Zeidan (2002, 2004, 2005) and the references therein. The possible 
extension of coupled point to half-linear equation and possibility to formulate comparison theorems 
in terms of coupled points is still an open question and a subject of the current research. 
Further, there are results from the theory of diff erential equations, which allow to study nonoscillatory 
half-linear diff erential equations as a perturbation of another half-linear equation. This technique 
has been started in the paper Elbert, Schneider (2000) and extended in a series of papers by Došlý and 
coauthors. Among others, it has been shown that this method extends to diff erence, see e.g. Došlý and 
Fišnarová (2008, 2009), and can be formulated in variational setting, see Došlý and Fišnarová (2011). 
We hope that developing similar method for functional (3) instead of functional with zero end points 
opens the door to future extensions. 
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