Acta Univ. Agric. Silvic. Mendelianae Brun. 2011, 59(6), 337-342 | DOI: 10.11118/actaun201159060337

Comparison of extractable soil carbon and dissolved organic carbon by their molecular characteristics

Martina Šestauberová, František Novák
Biologické centrum AV ČR, v. v. i., Ústav půdní biologie, Na Sádkách 7, 370 05 České Budějovice, Česká republika

The aim of this study was to compare the molecular characteristics of extractable soil carbon from biotopes of the Rašeliník watershed and dissolved organic carbon (DOC) from Rašeliník creek, by using the 0.1M pyrophosphate, 0.01M CaCl2 and Britton-Robinson buffer as extraction agents. The molecular weight Mr and weight-average molecular weight Mw, determined by the low pressure size exclusion chromatography, increased in the following sequence: humic substances (HS) in CaCl2 < aquatic HS < HS in sodium pyrophosphate ≤ HS in a buffer. Elution curves of all humic substances were characteristic by two peaks with predominant low-molecular fraction. Mr and Mw values of aquatic humic substances were 5.9 and 7.9 kDa, respectively, and proportion of this low-molecular fraction reached 97%. This corresponds to the fact, that the main fraction of HS in surface waters constitute fulvic acids. Using soil extraction in CaCl2 we obtained the fraction of organic carbon similar to the humic substances contain in DOC. Differences in quantity of humic substances extracted from soils among CaCl2 (mean 0.42 ± 0.39), Britton-Robinson buffer (34.9 ± 11.2) and sodium pyrophosphate (293.2 ± 113.4) were statistically significant. The A465/A665 ratio negatively correlated with molecular weight of humic substances.

Keywords: A465/A665 ratio, DOC, humic substances, molecular weight, size exclusion chromatography
Grants and funding:

This work was supported by the project No. 100018967 Cíl 3 - ČR - Sasko "Investigation of possibilities of organic pollutants minimization in sources of drinking water in Ore Mts".

Received: August 3, 2011; Published: March 16, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Šestauberová, M., & Novák, F. (2011). Comparison of extractable soil carbon and dissolved organic carbon by their molecular characteristics. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis59(6), 337-342. doi: 10.11118/actaun201159060337
Download citation

References

  1. BAES, A. U., BLOOM, P. R., 1990: Fulvic acid Ultraviolet-Visible spectra: Influence of solvent and pH. Soil Science Society of America Journal, 54, 1248-1254. ISSN 0361-5995. DOI: 10.2136/sssaj1990.03615995005400050008x Go to original source...
  2. BÁRTA, J., MELICHOVÁ, T., VANĚK, D., PICEK, T., ŠANTRŮČKOVÁ, H., 2010: Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil. Biogeochemistry, 101, 1-3, 123-132. ISSN 0168-2563. DOI: 10.1007/s10533-010-9430-9 Go to original source...
  3. BELLAR, T. A., LICHTENBERG, J. J., KRONER, R. C., 1974: The occurrence of organohalides in chlorinated drinking waters. Journal American Water Works Association, 66, 12, 703-706. ISSN 0003-150X. DOI: 10.1002/j.1551-8833.1974.tb02129.x Go to original source...
  4. CANELLAS, L. P., FAÇANHA, A. R., 2004: Chemical nature of soil humified fractions and their bioactivity. Pesq. agropec. bras., 39, 3, 233-240. ISSN 0100-204X. DOI: 10.1590/S0100-204X2004000300005 Go to original source...
  5. FILEP, T., REKASI, M., 2011: Factors controlling dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and DOC/DON ratio in arable soils based on a dataset from Hungary. Geoderma, 162, 3-4, 312-318. ISSN 0016-7061. DOI: 10.1016/j.geoderma.2011.03.002 Go to original source...
  6. FREEMAN, C., EVANS, C. D., MONTEITH, D. T., REYNOLDS, B., FENNER, N., 2001: Export of organic carbon from peat soils. Nature, 412, 785. ISSN 0028-0836. DOI: 10.1038/35090628 Go to original source...
  7. FUJII, K., HARTONO, A., FUNAKAWA, S., UEMURA, M., KOSAKI, T., 2011: Fluxes of dissolved organic carbon in three tropical secondary forests developed on serpentine and mudstone. Geoderma, 163, 1-2, 119-126. ISSN 0016-7061. DOI: 10.1016/j.geoderma.2011.04.012 Go to original source...
  8. GUNGOR, E. B. O., BEKBOLET, M., 2010: Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159, 1-2, 131-138. ISSN 0016-7061. DOI: 10.1016/j.geoderma.2010.07.004 Go to original source...
  9. CHEN, Y., SENESI, N., SCHNITZER, M., 1977: Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J., 41, 352-358. ISSN 0361-5995. DOI: 10.2136/sssaj1977.03615995004100020037x Go to original source...
  10. KUDRYAVTSEV, A. V., PERMINOVA, I. V., PETROSYAN, V. S., 2000: Size-exclusion chromatographic descriptors of humic substances. Analytica Chimica Acta, 407, 193-202. ISSN 0003-2670. DOI: 10.1016/S0003-2670(99)00814-4 Go to original source...
  11. LI, S., KYDRALIEVA, K., KULIKOVA, N., PERMINOVA, I., JOROBEKOVA, S., 2008: Synthesis, biological activity and detoxifying properties of carbonylated humic substances. In: PERMINOVA, I. V., KULIKOVA, N. A. (eds.), From molecular understanding to innovative applications humic substances. Proceedings of the 14th Meeting of IHSS. Moscow, Russia, September 14-19, 2008, Moscow, 563-566.
  12. MALCOLM, R. L., 1991: Factors to be considered in the isolation and characterisation of aquatic humic substances. In: ALLARD, B., BORÉN, H., GRIMVALL, A. (eds.), Humic substances in the aquatic and terrestrial environment. Proceedings of the International Symposium Linkoping, Sweden, August 21-23, 1989, Lecture Notes in Earth Sciences, Springer Verlag, New York, 33, 9-36. ISBN 3-540-53702-3. Go to original source...
  13. MONTEITH, D. T., STODDARD, J. L., EVANS, C. D., DE WIT, H. A., FORSIUS, M., HØGASEN, T., WILANDER, A., SKJELKVALE, B. L., JEFFRIES, D. S., VUORENMAA, J., KELLER, B., KOPÁČEK, J., VESELÝ, J., 2007: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537-541. ISSN 0028-0836. DOI: 10.1038/nature06316 Go to original source...
  14. PERMINOVA, I. V., FRIMMEL, F. H., KUDRYAVTSEV, A. V., KULIKOVA, N. A., ABBT-BRAUN, G., HESSE, S., PETROSYAN, V. S., 2003: Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation. Environmental Science and Technology, 37, 2477-2485. ISSN 0013-936X. DOI: 10.1021/es0258069 Go to original source...
  15. REMEŠ, M., KULHAVÝ, J., 2009: Dissolved organic carbon concentrations under conditions of different forest composition. Journal of Forest Science, 55, 201-207. ISSN 1212-4834. DOI: 10.17221/16/2009-JFS Go to original source...
  16. REUTER, J. H., PERDUE, E. M., 1977: Importance of heavy metal-organic matter interactions in natural waters, Geochimica et Cosmochimica Acta, 41, 325-334. ISSN 0016-7037. DOI: 10.1016/0016-7037(77)90240-X Go to original source...
  17. ROOK, J. J., 1974: Formation of Haloforms during Chlorination of Natural Waters. Wat. Treatment. Exam., 23(2), 234-243.
  18. SKJELKVALE, B. L., 2003: The 15-year report: Assesment and monitoring of surface waters in Europe and North America. ICP-Waters report 73/2003, 113 pp. ISBN 82-577-4386-0.
  19. STEVENSON, F. J., 1994: Humus Chemistry: Genesis, Composition, Reactions. 2nd edition, John Willey & Sons, New York, 496 pp. ISBN 0471594741.
  20. TRANVIK, L. J., JANSSON, M., 2002: Climate changed Terrestrial export of organic carbon. Nature 415, 861-862. ISSN 0028-0836. DOI: 10.1038/415861b Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.