Acta Univ. Agric. Silvic. Mendelianae Brun. 2011, 59(2), 347-352 | DOI: 10.11118/actaun201159020347

Comparison of time series forecasting with artificial neural network and statistical approach

Michael ©tencl, Ondřej Popelka, Jiří ©»astný
Ústav informatiky, Mendelova univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká republika

In this paper we concentrate on prediction of future values based on the past course of a variable. Traditionally this problem is solved using statistical analysis - first a time-series model is constructed and then statistical prediction algorithms are applied to it in order to obtain future values. The time series modelling is a very powerful method, but it requires knowledge or discovery of initial conditions when constructing the model.
The experiment described in this paper consists of a comparison of results computed by Multi-layer perceptron network with different learning algorithms previously published and results computed with different types of ARMA models. For the network configuration an analytical approach has been applied through the cross-validation method. We performed an exact comparison of both approaches on real-world data set. Results of two types of artificial neural network learning algorithms are compared with two algorithms of statistical prediction of future values.
The experiment results are later discussed from several different points. First the comparison is focused on output precision of both approaches. The comparison consists of matching neural networks results and real values on few steps of prediction. Then the results of ARMA models are compared with real values and conclusion is made. The conclusion also includes theoretical and practical recommendations.

Keywords: artificial neural networks, time series forecasting, statistical approach, comparison study
Grants and funding:

This work has been supported by the grants MSM 6215648904/03 - Research design of MENDELU and Research design of MENDELU number 116/2101/IG1100791.

Received: December 17, 2010; Published: July 7, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
©tencl, M., Popelka, O., & ©»astný, J. (2011). Comparison of time series forecasting with artificial neural network and statistical approach. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis59(2), 347-352. doi: 10.11118/actaun201159020347
Download citation

References

  1. HAGAN, M. T., MENHAJ, M., 1999: Training feed-forward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1999, pp. 989-993. DOI: 10.1109/72.329697 Go to original source...
  2. HUSEK, R., 2007: Ekonometrická analýza. 1st edition. Praha: Oeconomica. 2007, pp. 368. ISBN 978-80-245-1300-3. In Czech.
  3. MAŘÍK, V., ©TĚPÁNKOVÁ, O., LA®ANSKÝ, J. a kol., 2003: Umělá inteligence. 1st edition. Sv. 1. Praha: Academia. ISBN 80-200-0496-3. In Czech.
  4. MELOUN, M., MILITKÝ, J., 2004: Statistická analýza experimentálních dat. 2nd edition. Praha: Academia. 2004, pp. 953. ISBN 80-200-1254-0. In Czech.
  5. PROCHÁZKA, D., 2010: On development of search engine for geodata. Acta Universitatis agriculturae et silviculturae Mendelianae Brunensis. Sv. 6/2010, č. LVIII, pp. 389-397. ISSN 1211-8516. DOI: 10.11118/actaun201058060389 Go to original source...
  6. ROSENBLAD, A., 2009: Gret1 1.7.3. Journal of Statistical Software, Software Reviews. Vol. 25. N. 1. pp. 1-14 (2009). [online] [cit. 2010-11-22]. Available at.
  7. SOTIROV, S., 2002: A Method of Accelerating Neural Network Learning, Neural Processing Letters, Vol. 22, pp. 163-169. ISSN 1370-4621. DOI: 10.1007/s11063-005-3094-9 Go to original source...
  8. ©TENCL, M., ©«ASTNÝ, J., 2010: Neural network learning algorithms comparison on numerical prediction of real data. In: MENDEL 2010, 16th International Conference on Soft Computing. Brno: Brno University of Technology, 2010, pp. 280-285. ISSN 1803-3814.
  9. ©«ASTNÝ, J., ©KORPIL, V., 2005: Neural Networks Learning Methods Comparison, International Journal WSEAS Transactions on Circuits and Systems, Issue 4, Volume 4, pp. 325-330, ISSN 1109-2734.
  10. TSENG, F. M., YU, H. C., TZENG, G. H., 2002: Combining neural network model with seasonal time series ARIMA model. Technological Forecasting and Social Change, 69, 71-87. DOI: 10.1016/S0040-1625(00)00113-X Go to original source...
  11. WEDDING, D. K., CIOS, K. J., 1995: Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model, Neurocomputing, Vol. 10, pp. 149-168. DOI: 10.1016/0925-2312(95)00021-6. DOI: 10.1016/0925-2312(95)00021-6 Go to original source...
  12. WEINLICHOVÁ, J., FEJFAR, J., 2010: Usage of self-organizing neural network in evaluation of consumer behaviour. Acta Universitatis agriculturae et silviculturae Mendelianae Brunensis. Sv. 6/2010, č. LVIII, pp. 625-631. ISSN 1211-8516. DOI: 10.11118/actaun201058060625 Go to original source...
  13. WEINLICHOVÁ, J., ©TENCL, M., 2009: Artificial Neural Networks in Management Information Systems. Acta Universitatis agriculturae et silviculturae Mendelianae Brunensis. Sv. 6/2009, č. LVII, pp. 331-334. ISSN 1211-8516. DOI: 10.11118/actaun200957060331 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.