Acta Univ. Agric. Silvic. Mendelianae Brun. 2010, 58(5), 239-246 | DOI: 10.11118/actaun201058050239

NANOTEXTILNÍ MEMBRÁNY PRO ZACHYCENÍ BAKTERIÍ Escherichia coli

Jaroslav Lev1, Libor Kalhotka2, Michal Černý1
1 Ústav techniky a automobilové dopravy, Mendelova univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká republika
2 Ústav agrochemie, půdoznalství, mikrobiologie a výživy rostlin, Mendelova univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká republika

Práce popisuje experimentální práci zabývající se možností využití nanotextilních materiálů pro filtraci mikrobiologicky znečištěné vody nanotextilií. Cílem práce bylo ověřit filtrační schopností vybraných nanotextilních materiálů vyrobených metodou elektrospinningu a zhodnotit možnosti využití v praxi. Pro experiment byly použity nanotextilní vzorky z PA a PUR s rozdílnými materiálovými parametry a na různých nosných materiálech. Vzorky byly označeny (materiál nanovláken / nosná textilie) PA612/viskóza, PUR1/PP spunbond, PUR2/PP spunbond, PUR3/viskóza. Přes vzorky kruhového průřezu o průměru 48 mm (funkční průměr 38 mm) bylo filtrováno pomocí filtračního zařízení 100 ml mikrobiologicky znečištěné vody za přetlaku 105 Pa (1Bar). Pro simulaci mikrobiologického znečištění byly použity bakterie E. coli. Po filtraci byly vzorky inkubovány 72 hod při teplotě 37 °C. Po inkubaci byl proveden mikrobiologický rozbor vzorků před a po filtraci. Všechny nanotextilní materiály vykazovaly filtrační účinnost nad 94 %. Konkrétněji tři vrstvy PA612-99,580 %, PUR1-94,866 %, PUR2-99,996 %, PUR3-98,965 %. Podle výsledků nemá nosné médium podstatný vliv na účinnost filtrace, vzhledem k lepší adhezi nanotextilní vrstvy lze pro filtraci kapalin doporučit materiál nosného média z viskózy. Výsledky experimentu jsou dobrým předpokladem pro další experimenty s nanotextilním materiály pro filtraci kapalin a naznačují možné reálné použití membrán z nanotextilních materiálů pro úpravu vody v praxi.

nanotextilie, čištění vody, zachycení bakterií

Nanotextile membranes for bacteria Escherichia coli capturing

The article describes an experimental study dealing with the possibility of nanotextile materials usage for microbiologically contaminated water filtration. The aim of the study is to verify filtration ability of different nanotextile materials and evaluate the possibilities of practical usage. Good detention ability of these materials in the air filtration is the presumption for nanotextile to be used for bacteria filtration from a liquid. High nanotextile porosity with the nanotextile pores dimensions smaller than a bacteria size predicates the possibility of a successful usage of these materials. For the experiment were used materials made from electrospinning nanofibres under the label PA612, PUR1, PUR2 s PUR3 on the supporting unwoven textiles (viscose and PP). As a model simulation of the microbial contamination, bacteria Escherichia coli was chosen. Contaminated water was filtered during the overpressure activity of 105Pa on the input side of the filter from the mentioned material. After three-day incubation on the nutrient medium, cultures found in the samples before and after filtration were compared. In the filtrated water, bacteria E. coli were indicated, which did not verify the theoretical presumptions about an absolut bacteria detention. However, used materials caught at least 94% of bacteria in case of material PUR1 and up to 99,996% in case of material PUR2. These results predict the possibility of producing effective nanotextile filters for microbiologically contaminated water filtration.
Recommendation: For the production of materials with better filtrating qualities, experiments need to be done, enabling better understanding of the bacteria detention mechanisms on the nanotextile material, and parameters of the used materials that influence the filtrating abilities need to be verified.

Keywords: nanotextile membranes, water purification, bacteria capturing
Grants and funding:

Příspěvek byl financován s podporou Interní grantové agentury Mendelovy univerzity v Brně - Agronomické fakulty č. 2102/IG290161.

Received: March 15, 2010; Published: August 6, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lev, J., Kalhotka, L., & Černý, M. (2010). Nanotextile membranes for bacteria Escherichia coli capturing. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis58(5), 239-246. doi: 10.11118/actaun201058050239
Download citation

References

  1. AMBROŽOVÁ, J., 2004: Mikrobiologie v technologii vod. VŠCHT Praha, 244 s., ISBN 80-7080-534-X.
  2. BAUMGARTEN P. K., 1971: Electrostatic spinning of acrylic microfibers, J of Colloid and Interface Science 1971; 36: p. 71-79. DOI: 10.1016/0021-9797(71)90241-4 Go to original source...
  3. BOLGEN, N., MENCELOGLU, Y. Z., ACATAY, K., VARGEL, I. P., 2005: E. In vitro and in vivo degradation of nonwoven materials made of poly(e-caprolactone) nanofibers prepared by electrospinning under different conditions. Journal of Biomaterials Science PE, J Biomater Sci Polym;16: p. 1537-55. DOI: 10.1163/156856205774576655 Go to original source...
  4. DROZIN, V. G., 1955: The electrical dispersion of liquids as aerosols, Journal of Colloid Science, Volume 10, Issue 2, p. 158-164. DOI: 10.1016/0095-8522(55)90022-2 Go to original source...
  5. EUGENE, D. et al., 2005: Electrospinning polydioxanone for biomedical applications. Acta Biomaterialia, Volume 1, Issue 1, p. 115-123. Go to original source...
  6. FENG, C. et al., 2008: Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. Journal of Membrane Science, Volume 311, Issues 1-2, p. 1-6. DOI: 10.1016/j.memsci.2007.12.026 Go to original source...
  7. FONG, H., RENEKER, D. H., 2001: Electrospinning and formation of nanofibers. In: Salem DR, editor. Structure formation in polymeric fibers. Munich: Hanser; p. 225-46. Go to original source...
  8. Formhals A. US patent 1,975,504, 1934.
  9. Formhals A. US patent 2,160,962, 1939.
  10. Formhals A. US patent, 2,187,306, 1940.
  11. Formhals A. US patent, 2,323,025, 1943.
  12. Formhals A. US patent, 2,349,950, 1944.
  13. FRENOT, A., CHRONAKIS I. S., 2003: Polymer nanofibers assembled by electrospinning, Current Opinion in Colloid & Interface Science, Volume 8, Issue 1, p. 64-75. DOI: 10.1016/S1359-0294(03)00004-9 Go to original source...
  14. GARRITY, M. G. et al., 2005: Bergey's Manual of Systematic bacteriology, second edition, Volume two, The Proteobacteria. Michigan State University, ISBN-10: 0-387-24144-2.
  15. HIJNEN, W. A. M. et al., 2000: Enumeration of faecal indicator bacteria in large water volumes using on site membrane filtration to assess water treatment efficiency. Water Research, Volume 34, Issue 5, p. 1659-1665. DOI: 10.1016/S0043-1354(99)00311-5 Go to original source...
  16. CHUN I, RENEKER, D. H. et al., 1999: Carbon nanofibers from polyacrylonitrile and mesophase pitch, Journal of Advanced Materials 1999; 31 (1): p. 36-41.
  17. CHUN, I., RENEKER D. H. et al., 1998: Carbon nanofibers from polyacrylonitrile and mesophase pitch, International SAMPE Symposium and Exhibition, p. 718-29.
  18. JING-WEN, CH. et al., 2008: Preparation of biocompatible membranes by electrospinning, Desalination, Volume 233, Issues 1-3, p. 48-54. Go to original source...
  19. Jašíková, D. a kol., 2009: Nanofilter evaluation usány visualization methods. Nanocon 2009, s. 186-190. ISBN 978-80-87294-13-0.
  20. JIRSÁK, O. a kol., 2004: Nanofibres and filtration, Sborník NANO04, Brno VUT, s. 134-148, ISBN 80-214-2793-0.
  21. JIRSÁK, O. a kol., 2003: Production and Properties of Nanofibres, Sborník NANO03, s. 142-147, Brno VUT, ISBN 80-214-2527-X.
  22. LARRONDO, MANLEY R., ST J., 1981: Electrostatic fiber spinning from polymer melts, I. and Experimental observations on fiber formation and properties, Journal of Polymer Science: Polymer Physics Edition 1981; 19: p. 909-20. Go to original source...
  23. LARRONDO, MANLEY R., ST J., 1981: Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet, Journal of Polymer Science: Polymer Physics Ed 1981; 19: p. 921-32. Go to original source...
  24. LARRONDO, MANLEY R., 1981: Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. Journal of Polymer Science: Polymer Physics Ed 1981; 19: p. 933-40. Go to original source...
  25. LELLÁK, J., KUBÍČEK, F., 1991: Hydrobiologie. Karolinum Praha, 260 s., ISBN 80-7066-530-0.
  26. LI W-J, LAURENCIN C. T., CATERSON E. J., TUAN R. S., 2001: Electrospun nanofibrous structure: a novel scaffold for tissue engineering, Journal of Biomed. Mater. Res. 2001; 60: p. 613-21. DOI: 10.1002/jbm.10167 Go to original source...
  27. MARENDIAK, D., KOPČANOVÁ, L., LEITGEB, S., 1987: Poľnohospodárska mikrobiológia. Príroda Bratislava, 444 s.
  28. NEUBAUER, R. L., VONNEGUT, B., 1953: Supplement to "production of monodisperse liquid particles by electrical atomization", Journal of Colloid Science, Volume 8, Issue 5, p. 551-552. DOI: 10.1016/0095-8522(53)90062-2 Go to original source...
  29. PATENT (Nanospider) PV 2003-2421.
  30. RENEKER, DH, CHUN, I., 1996: Nanometre diameter fibresof polyme produced by electrospinning. Nanotechnology 1996; 7: p 216-23. DOI: 10.1088/0957-4484/7/3/009 Go to original source...
  31. RENEKER, D. H., SHIN, C., CHASE G. G., 2005: Recycled expanded polystyrene nanofibers applied in filter media. Colloid Surf A: Physicochem Eng Aspects 2005; 262: p. 211-5. Go to original source...
  32. RENUGA, G. et al., 2006: Electrospun nanofibrous filtration membran, Journal of Membrane Science, Volume 281, Issues 1-2, p. 581-586. Go to original source...
  33. SCOTT, A. S. et al., 2009: Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Advanced Drug Delivery Reviews, Volume 61, Issue 12, p. 1007-1019. Go to original source...
  34. SIMONS H.L. 1966: US patent 3, 280, 229.
  35. VONNEGUT, B., NEUBAUER, R. L., 1952: Production of monodisperse liquid particles by electrical atomization, Journal of Colloid Science, Volume 7, Issue 6, p. 616-622. DOI: 10.1016/0095-8522(52)90043-3 Go to original source...
  36. VONNEGUT, B., NEUBAUER, R. L., 1952: Journal of Colloid Science 1952; 7: 616. DOI: 10.1016/0095-8522(52)90043-3 Go to original source...
  37. YÖRDEM, O. S., PAPILA, M., MENCELOĞLU, Y. Z., 2008: Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology, Materials & Design, Volume 29, Issue 1, p. 34-44. DOI: 10.1016/j.matdes.2006.12.013 Go to original source...
  38. ZHENG-MING HUANG et al., 2003: A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, Volume 63, Issue 15, p. 2223-2253. Go to original source...
  39. NANOFIBROUS MATERIÁL FOR TISSUE ENGINEERING, [on-line], Imperial college London, [cit. 2. 3. 2010], [http://www.centropede.com/UKSB2006/ePoster/background.html].
  40. VLÁKENNÉ NANOMATERIÁLY [on-line] TU Liberec, [cit. 2. 3. 2010], [http://nano.tul.cz/assets/files/knt/thumb.html].

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.