Acta Univ. Agric. Silvic. Mendelianae Brun. 2023, 71(1), 43-51 | DOI: 10.11118/actaun.2023.004

Influence of Parallel Driving Systems and Differentiated Fertilizer Application on the Efficiency of Using Machine and Tractor Units in the Southern Chernozem of North Kazakhstan

Alexey Ivanovich Derepaskin1, Yurij Vladimirovich Poliсhshuk1, Amangeldy Bulatovich Shayakhmetov2, Tatyana Vitalyevna Bedych2, Anton Nikolaevich Kuvaev3, Ivan Vladimirovich Tokarev3
1 KF LLP "Scientific and production center of agroengineering", Kostanay, Kazakhstan
2 Faculty of Engineering and Technology, Kostanay Engineering and Economics University Myrzhakyp Dulatov, Street Chernyshevskogo 59, Kostanay, 110000, Kazakhstan
3 Department "Machines, tractors and cars", Kostanay State University A Baytursynova, Baytursynov Street 47, Kostanay 110000, Kazachstan

The article presents the results of evaluating the effectiveness of the use of modern electronic driving systems for machine-tractor units in the precision farming system and comparative tests of a new cultivator-fertilizer for shallow non-moldboard cultivation and subsoil differentiated application of mineral fertilizers in the fallow field of southern chernozems of the northern region of Kazakhstan. In the Republic of Kazakhstan, near and far abroad, technical means for subsoil application to a depth of more than 14 cm with a differentiated application system for non-moldboard processing are not produced. Therefore, such work has not been carried out, which does not allow evaluating the effectiveness of the use of modern electronic systems for driving aggregates and differentiated application of fertilizers for flat-cutting cultivation on the southern chernozems of the northern region of Kazakhstan. The purpose of the tests is to evaluate the effectiveness of the use of modern electronic driving systems for machine-tractor units in the precision farming system.

Keywords: precision farming, electronic systems, parallel driving, mineral fertilizers, differentiated application, electronic map, test results

Received: October 23, 2022; Revised: January 30, 2023; Accepted: February 27, 2023; Published: March 1, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ivanovich Derepaskin, A., Vladimirovich Poliсhshuk, Y., Bulatovich Shayakhmetov, A., Bedych, T.V., Nikolaevich Kuvaev, A., & Vladimirovich Tokarev, I. (2023). Influence of Parallel Driving Systems and Differentiated Fertilizer Application on the Efficiency of Using Machine and Tractor Units in the Southern Chernozem of North Kazakhstan. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis71(1), 43-51. doi: 10.11118/actaun.2023.004
Download citation

References

  1. ABRAMOV, N. V. and SEMIZOROV, S. A. 2018. Innovative Technologies of Cultivation of Crops in the Era of the Digital Economy. In: Proceedings of the International scientific and practical conference "AgroSMART - Smart solutions for agriculture" (AgroSMART 2018). Northern Trans-Ural State Agricultural University, 16-20 July. Tyumen: Atlantis Press, pp. 1-5. Go to original source...
  2. ABUOVA, A. B. , TULKUBAEVA, S. A. and TULAEV, Y. V. 2019. Assessment of spatial heterogeneity of agrochemical soil parameters within the field experiment plot [in Russian: Оценка пространственной неоднородности агрохимических параметров почвы в пределах делянки полевого опыта]. 3i: intellect, idea, innovation, 2: 36-42.
  3. BORGHI, E., AVANZI, J. C., BORTOLON, L., LUCHIARI, A. J. and BORTOLON, E. 2016. Adoption and Use of Precision Agriculture in Brazil: Perception of Growers and Service Dealership. Journal of Agricultural Science, 8(11): 89-104. DOI: http://dx.doi.org/10.5539/jas.v8n11p89 Go to original source...
  4. DEREPASKIN, A. I., KUVAYEV, A. N. and TOKAREV, I. V. 2014. Influence of switchgear parameters on the quality of granulated fertilizers distribution [in Russian: Влияние параметров распределительного устройства на качество распределения гранулированных удобрений]. Bulletin of the Kurgan State Agricultural Academy, 4: 61-63.
  5. DEREPASKIN, A. I. , KUVAYEV, A. N. and TOKAREV, I. V. 2015. Production tests of working bodies for applying the main dose of mineral fertilizers simultaneously with the main tillage [in Russian: Производственные испытания рабочих органов для внесения основной дозы минеральных удобрений одновременно с основной обработкой почвы]. Agroindustrial Complex of Russia, 72(1): 32-35.
  6. DEREPASKIN, A. I. , POLISHCHUK, Y. V., KUVAYEV, A. N. and TOKAREV, I. V. 2016. Substantiation of the technological scheme and parameters of working bodies for the main treatment of compacted soils [in Russian: Обоснование технологической схемы и параметров рабочих органов для основной обработки уплотненных почв]. International Agroengineering, 3: 29-37.
  7. DEREPASKIN, A. I., TOKAREV, I. V. and KUVAYEV, A. N. 2020. Laboratory tests of a combined tool for in-soil differentiated application of granular mineral fertilizers [in Russian: Лабораторные испытания комбинированного орудия для внутрипочвенного дифференцированного внесения гранулированных минеральных удобрений]. Multidisciplinary Scientific Journal of A. Baitursynov KSU, 1: 120-126.
  8. DEREPASKIN, A. I. , KUVAYEV, A. N. and TOKAREV, I. V. 2021. Field studies of a cultivator-fertilizer with a system of differentiated application of mineral fertilizers [in Russian: Полевые исследования культиватора-удобрителя с системой дифференцированного внесения минеральных удобрений]. Agricultural machines and technologies, 2: 46-52. Go to original source...
  9. DEREPASKIN, A. I. and KOMAROV, A. P. 2021. Justification of the layout of the working bodies of tillage implements according to the criteria of metal consumption and traction resistance [in Russian: Обоснование схем расположения рабочих органов почвообрабатывающих орудий по критериям металлоемкости и тяговому сопротивлению]. Machinery and equipment for the village, 8: 10-13. Go to original source...
  10. DEREPASKIN, A. I. , KUVAYEV, A. N. and TOKAREV, I. V. 2022. A mathematical model for determining the constructive mass of a tillage tool [in Russian: Математическая модель для определения конструктивной массы почвообрабатывающего орудия]. Agricultural machines and technologies, 1: 27-33. Go to original source...
  11. EREMIN, D. I. and KIBUK, Y. P. 2017. Differentiated fertilization as an innovative approach in the precision farming system [in Russian: Дифференцированное внесение удобрений как инновационный подход в системе точного земледелия]. Bulletin of KSAU, 8: 17-26.
  12. ERICKSON, B. and WIDMAR, D. A. 2015. Precision agricultural services dealership survey results. West Lafayette: Dept. of Agricultural Economics/Dept. of Agronomy, Purdue University.
  13. JOINT RESEARCH CENTRE (JRC) OF EUROPEAN COMMISSION. 2014. Precision agriculture: an opportunity for EU farmers - potential support with the CAP 2014-2020 [online]. Available at: https://www.europarl.europa.eu/RegData/etudes/note/join/2014/529049/IPOL-AGRI_NT%282014%29529049_EN.pdf [Accessed: 2023, January 23].
  14. TAKÃCS-GYÖRGY, K. 2008. Economic aspects of chemical reduction on farming - future role of precision farming. Acta Agriculturae Scandinavica Section C Economy, 5(2): 115-120. DOI: https://doi.org/10.1080/16507540903093242 Go to original source...
  15. LICHMAN, G. I., KOLESNIKOVA, V. A., MARCHENKO, N. M. and MARCHENKO, A. N. 2017. Development of an algorithm for assessing the accuracy of GLONASS/GPS positioning systems with differentiated fertilization [in Russian: Разработка алгоритма оценки точности систем позиционирования ГЛОНАCC/GPS при дифференцированном внесении удобрений]. Agricultural machines and Technologies, 2: 4-8. Go to original source...
  16. NUKESHEV, S. O., LICHMAN, G. I. and MARCHENKO, N. M. 2007. Substantiation of requirements to quality of application of mineral fertilizers in system of precision agriculture. S. Seifullin Kazakh Agro Technical University Science Review, 1(2): 59-67.
  17. NUKESHEV, S. O. 2010. Technological and technical solutions to the problem of tiered differentiated application of the main dose of fertilizers [in Russian: Технологические и технические решения проблемы ярусного дифференцированного внесения основной дозы удобрений]. In: Strategy of development of Russian agrarian education and agricultural science in the 21st century: Materials of the Scientific and practical conference, dedicated to the 70th anniversary of the Ural State Agricultural Academy. Part 2. Ural State Agricultural Academy, February 4. Yekaterinburg: Ural State Agricultural Academy, pp. 54-59.
  18. POLISHCHUK, Y. V., LAPTEV, N. V. and KOMAROV, A. P. 2020. Application of automatic and parallel driving systems in agricultural production of the Republic of Kazakhstan and the effectiveness of their use [in Russian: Применение систем автоматического и параллельного вождения в сельскохозяйственном производстве Республики Казахстан и эффективность их использования]. Agrarian Bulletin of the Urals, 5: 11-19. Go to original source...
  19. POLISHCHUK, Y. V., ASTAFYEV, V. L., DEREPASKIN, A. I., KOSTYUCHENKOV, N. V., LAPTEV, N. V. and KOMAROV, A. P. 2021. Impacts of automatic and parallel driving systems on the productivity of machine-tractor units in the northern region of the republic of Kazachstan. Acta Technologica Agriculturae, 24(3): 143-149. Go to original source...
  20. SCHIMMELPFENNIG, D. 2016. Farm profits and adoption of precision agriculture: Economic research report. U.S. Department of Agriculture, 217: 39.
  21. STAFFORD, J. V. 2015. Precision agriculture'15. In: 10th European Conference on Precision Agriculture. Volcani Center, Israel, 12-16 July 2015. Wageningen: Wageningen Academic Publisher. Go to original source...
  22. STATE STANDARD. 2007. Agricultural machinery. Methods of energy assessment. GOST R 52777-2007. Moscow: FMUE Standartinform.
  23. STATE STANDARD. 2008. Tests of agricultural machinery. Methods of operational and technological assessment. Introduction. GOST R 52778-2007. Moscow: Standartinform.
  24. STATE STANDARD. 2010. Agricultural machinery. Methods of economic assessment. Introduction. ST RK GOST R 53056-2010. Astana: Committee on Technical Regulation and Metrology of the Ministry of Industry and Trade of the Republic of Kazakhstan.
  25. STATE STANDARD. 2013. Agricultural machinery. Methods for determining test conditions. GOST 20915-2011. Moscow: FMUE Standartinform.
  26. STATE STANDARD. 2017. Agricultural machinery. Machines for deep tillage. Test methods. Introduction. 2018-01-01. GOST 33736-2016. Moscow: FMUE Standartinform.
  27. TOKAREV, I. V., KUVAYEV, A. N. and DEREPASKIN, A. I. 2020. The choice of a system of differentiated fertilizer application and the results of laboratory tests in Northern Kazakhstan [in Russian: Выбор системы дифференцированного внесения удобрений и результаты лабораторных испытаний Cеверном Казахстане]. Tractors and agricultural machines, 3: 28-34. Go to original source...
  28. YAKUSHEV, V. P. and YAKUSHEV, V. V. 2007. Information support of precision agriculture: monograph [in Russian: Информационное обеспечение точного земледелия: монография]. St. Petersburg: Publishing House of the PNPI RAS.
  29. YAKUSHEV, V. V. 2016. Precision agriculture: theory and practice [in Russian: Точное земледелие: теория и практика]. St. Petersburg: FSBSI ARI.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.