Acta Univ. Agric. Silvic. Mendelianae Brun. 2020, 68(3), 559-566 | DOI: 10.11118/actaun202068030559

Comparison of LiDAR-based Models for True Leaf Area Index and Effective Leaf Area Index Estimation in Young Beech Forests

Zdeněk Patočka1, Kateřina Novosadová2, Pavel Haninec3, Radek Pokorný2, Tomáš Mikita1, Martin Klimánek1
1 Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2 Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
3 Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

The leaf area index (LAI) is one of the most common leaf area and canopy structure quantifiers. Direct LAI measurement and determination of canopy characteristics in larger areas is unrealistic due to the large number of measurements required to create the distribution model. This study compares the regression models for the ALS-based calculation of LAI, where the effective leaf area index (eLAI) determined by optical methods and the LAI determined by the direct destructive method and developed by allometric equations were used as response variables. LiDAR metrics and the laser penetration index (LPI) were used as predictor variables. The regression models of LPI and eLAI dependency and the LiDAR metrics and eLAI dependency showed coefficients of determination (R2) of 0.75 and 0.92, respectively; the advantage of using LiDAR metrics for more accurate modelling is demonstrated. The model for true LAI estimation reached a R2 of 0.88.

Keywords: airborne laser scanning, LiDAR, leaf area index, effective leaf area index, LAI, eLAI, allometric models, destructive method, indirect methods
Grants and funding:

This work was supported by the Internal Grant Agency of Faculty of Forestry and Wood Technology, Mendel University in Brno. The paper was worked out as a part of research project reg. No. LDF_VP_2016015, "Use of point clouds derived by unmanned aerial vehicle imagery and airborne laser scanning for leaf area index estimation". The paper publishing was also financed by the National Agency of Agricultural Research in the Czech Republic, research project reg. No. QK1810415, "Influence of forest stands species composition and structure on the microclimate and landscape hydrology".

Received: March 9, 2020; Accepted: May 31, 2020; Published: July 1, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Patočka, Z., Novosadová, K., Haninec, P., Pokorný, R., Mikita, T., & Klimánek, M. (2020). Comparison of LiDAR-based Models for True Leaf Area Index and Effective Leaf Area Index Estimation in Young Beech Forests. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis68(3), 559-566. doi: 10.11118/actaun202068030559
Download citation

References

  1. ALONZO, M., BOOKHAGEN, B., MCFADDEN, J. P. et al. 2015. Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sensing of Environment, 162: 141-153. DOI: 10.1016/j.rse.2015.02.025 Go to original source...
  2. ASNER, G. P., SCURLOCK, J. M. O. and HICKE, J. A. 2003. Global Synthesis of Leaf Area Index Observations: Implications for Ecological and Remote Sensing Studies. Global Ecology & Biogeography, 12(3): 191-205. DOI: 10.1046/j.1466-822X.2003.00026.x Go to original source...
  3. BARILOTTI, A., TURCO, S. and ALBERTI, G. 2006. LAI determination in forestry ecosystem by lidar data analysis. In: International workshop 3D remote sensing in forestry. Wien: BOKU, pp. 248-252.
  4. BEETS, P. N., REUTEBUCH, S., KIMBERLEY, M. O. et al. 2011. Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR. Forests, 2(4): 637-659. DOI: 10.3390/f2030637 Go to original source...
  5. BRÉDA, N. J. J. 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392): 2403-2417. DOI: 10.1093/jxb/erg263 Go to original source...
  6. CALDWELL, M. M., DEAN, T. J., NOWAK, R. S. et al. 1983a. Bunchgrass architecture, light interception and water-use efficiency: Assesment by fiber optic point quadrants and gas exchange. Oecologia, 59(2-3): 178-184. DOI: 10.1007/BF00378835 Go to original source...
  7. CALDWELL, M. M., HARRIS, G. W. and DZUREC, R. S. 1983b. A fiber optic point quadrant system for improved accuracy in vegetation sampling. Oecologia, 59: 417-418. DOI: 10.1007/BF00378874 Go to original source...
  8. CHEN, J. M., BLACK, T. A. and ADAMS, R. S. 1991. Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agricultural and Forest Meteorology, 56(1): 129-143. DOI: 10.1016/0168-1923(91)90108-3 Go to original source...
  9. CHEN, J. M. and CIHLAR, J. 1995. Plant canopy gap size analysis theory for improving optical measurements of leaf area index. Applied Optics, 34(27): 6211-6222. DOI: 10.1364/AO.34.006211 Go to original source...
  10. CHEN, J. M., RICH, P. M., GOWER, S. T. et al. 1997. Leaf area index of boreal forests: theory, techniques, and measurements. Journal of Geophysical Research-Atmospheres, 102(D24): 29429-29443. DOI: 10.1029/97JD01107 Go to original source...
  11. CUTINI, A., MATTEUCCI, G. and MUGNOZZA, G. S. 1998. Estimation of leaf area index with the Li-Cor LAI-2000 in deciduous forests. Forest Ecology and Management, 105(1-3): 55-65. DOI: 10.1016/S0378-1127(97)00269-7 Go to original source...
  12. GOWER, S. T., KUCHARIK, C. J. and NORMAN, J. M. 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70(1): 29-51. DOI: 10.1016/S0034-4257(99)00056-5 Go to original source...
  13. JONCKHEERE, I., FLECK, S., NACKAERTS, K. et al. 2004. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1): 19-35. DOI: 10.1016/j.agrformet.2003.08.027 Go to original source...
  14. KWAK, D. A., LEE, W. K. and CHO, H. K. 2007. Estimation of LAI using LiDAR remote sensing in forest. In: RÖNNHOLM, P. et al. (Eds.). Proceedings of the ISPRS Workshop on Laser Scanning and SilviLaser. Espoo-Finland.
  15. LE DANTEC, V., DUFRĘNE, E. and SAUGIER, B. 2000. Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. Forest Ecology and Management, 134(1/3): 71-81. DOI: 10.1016/S0378-1127(99)00246-7 Go to original source...
  16. LEBLANC, S. G., CHEN, J. M., FERNANDES, R. et al. 2005. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology, 129(3-4): 187-207. DOI: 10.1016/j.agrformet.2004.09.006 Go to original source...
  17. LÜDEKE, M., JANECEK, A. and KOHLMAIER, G. H. 1991. Modelling the seasonal CO2 uptake by land vegetation using the global vegetation index. Tellus, 43B: 188-196. DOI: 10.3402/tellusb.v43i2.15263 Go to original source...
  18. MCGAUGHEY, R. 2018. FUSION/LDV: software for LiDAR data analysis and visualization, version 3.70. USDA Forest Service, Pacific Northwest Research Station, University of Washington, Seattle, Washington, USA.
  19. MENCUCCINI, M. and GRACE, J. 1995. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiology, 15(1): 1-10. DOI: 10.1093/treephys/15.1.1 Go to original source...
  20. MIKITA, T., PATOČKA, Z. and SABOL, J. 2014. Estimation of leaf area index (LAI) in forests on the basis of airborne laser scanning in the conditions of the Czech Republic [in Czech: Výpočet indexu listové plochy (LAI) v lesních porostech na základě dat leteckého laserového skenování v podmínkách České republiky]. Reports of Forestry Research, 59(4): 234-242.
  21. MONSI, M. and SAEKI, T. 2005. On the factomonsir light in plant communities and its importance for matter production. Annals of Botany, 95(3): 549-567. DOI: 10.1093/aob/mci052 Go to original source...
  22. MORRISON, I. K. 1991. Effect of trap dimensions on mass of litterfall collected in an Acer saccharum stand in northern Ontario. Canadian Journal of Forest Research, 21(6): 939-941. DOI: 10.1139/x91-130 Go to original source...
  23. MUSSCHE, S., SAMSON, R., NACHTERGALE, L. et al. 2001. Acomparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35(4): 373-384. DOI: 10.14214/sf.575 Go to original source...
  24. MUSSELMAN, K. N., MARGULIS, S. A. and NOAH, P. M. 2013. Estimation of solar direct beam transmittance of conifer canopies from airborne LiDAR. Remote Sensing of Environment, 136: 402-415. DOI: 10.1016/j.rse.2013.05.021 Go to original source...
  25. MYNENI, R. B., NEMANI, R. R. and RUNNING, S. W. 1997. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on geoscience and remote sensing, 35(6): 1380-1393. DOI: 10.1109/36.649788 Go to original source...
  26. PEDUZZI, A., WYNNE, R. H., THOMAS, V. A. et al. 2012. Combined use of airborne lidar and DBInSAR data to estimate LAI in temperate mixed forests. Remote Sensing, 4(6): 1758-1780. DOI: 10.3390/rs4061758 Go to original source...
  27. PIROTTI, F. 2011. Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods. iForest, 4(3): 100-106. DOI: 10.3832/ifor0562-004 Go to original source...
  28. QU, Y., SHAKER, A., SILVA, C. A., KLAUBERG, C. et al. 2018. Remote Sensing of Leaf Area Index from LiDAR Height Percentile Metrics and Comparison with MODIS Product in a Selectively Logged Tropical Forest Area in Eastern Amazonia. Remote Sensing, 10(6): 970. DOI: 10.3390/rs10060970 Go to original source...
  29. RIAÑO, D., VALLADARES, F., CONDÉS, S. and CHUEVICO, E. 2004. Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural and Forest Meteorology, 124(3-4): 269-275. DOI: 10.1016/j.agrformet.2004.02.005 Go to original source...
  30. SOLBERG, S. 2010. Mapping gap fraction, LAI and defoliation using various ALS penetration variables. International Journal of Remote Sensing, 31(5): 1227-1244. DOI: 10.1080/01431160903380672 Go to original source...
  31. ZHENG, G. and MOSKAL, L. M. 2009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9(4): 2719-2745. DOI: 10.3390/s90402719 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.