Acta Univ. Agric. Silvic. Mendelianae Brun. 2020, 68(3), 507-518 | DOI: 10.11118/actaun202068030507

Soil Arthropods in Differently Used Agroecosystems Along an Ecological Gradient in Slovakia

Radoslava Kanianska1, Jana Jaďuďová1, Miriam Kizeková2, Jarmila Makovníková3, Bernard Šiška4, Jozef Varga1, Nikola Benková1
1 Faculty of Natural Sciences, Matej Bel University Banská Bystrica, Tajovského 40, 974 01 Banská Bystrica, Slovakia
2 National Agricultural and Food Centre, Grassland and Mountain Agriculture Research Institute, Mládežnícka 36, 974 21 Banská Bystrica, Slovakia
3 National Agricultural and Food Centre, Soil Science and Conservation Research Institute Bratislava, Regional Station Banská Bystrica, Mládežnícka 36, 974 21 Banská Bystrica, Slovakia
4 Faculty of European Studies and Regional Development, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia

Arthropods are part of important functional groups in soil and little is known about their composition in differently used agroecosystems across larger spatial scales. We analysed the qualitative and quantitative structure of soil arthropods with emphasis on ground beetles in different agroecosystems in relation to the various factors (soil physical properties) that Slovakia as a highly diversified country offers. Research was conducted in 4 different soil types (Arenosol, Cambisol, Fluvisol, Leptosol) at 6 study sites located in three different ecological zones with two different land use types (arable land - AL and permanent grasslands - PG). Ten orders of soil arthropods were identified, of which the most abundant was the order Coleoptera, specifically the Poecilus cupreus species in the Carabidae family. The analysis of variance confirmed significant effect of land use type on arthropod number and ecological gradient on arthropod biomass and soil temperature. The number and biomass of arthropods was nearly twice as high in PG plots compared to AL plots with the exception of two study sites located in sub-mountain and mountain regions with the dominance and proximity of extensive forest and grassland ecosystems. From the ecological gradient point of view, the highest arthropod biomass was recorded in the mountain ecological zone.

Keywords: soil arthropod, arable land, permanent grassland, soil physical property
Grants and funding:

This work was supported by the Slovak Research and Development Agency under Grant No. APVV-0098-12, and by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic under Grant No. VEGA 1/0767/17. The research of abiotic soil parameters was done by the equipment supported by Operational Programme Research and Development via contract No. ITMS-26210120024.

Received: April 27, 2018; Accepted: June 8, 2020; Published: July 1, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kanianska, R., Jaďuďová, J., Kizeková, M., Makovníková, J., Šiška, B., Varga, J., & Benková, N. (2020). Soil Arthropods in Differently Used Agroecosystems Along an Ecological Gradient in Slovakia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis68(3), 507-518. doi: 10.11118/actaun202068030507
Download citation

References

  1. ALONSO-PÉREZ, F., RUIZ-LUNA, A., TURNER, J., BERLANGA-ROBLES, C. A. and MITCHELSON-JACOB, G. 2003. Land cover changes and impact of shrimp aquaculture on the landscape in the Ceuta coastal lagoon system, Sinaloa, Mexico. Ocean & Coastal Management, 46(6-7): 583-600. DOI: 10.1016/S0964-5691(03)00036-X Go to original source...
  2. BALE, J. S. and HAYWARD, S. A. L. 2010. Insect overwintering in a changing climate. The Journal of Experimental Biology, 213(6): 980-994. DOI: 10.1242/jeb.037911 Go to original source...
  3. BARDGETT, R. D. 2002. Causes and consequences of biological diversity in soil. Zoology, 105(4): 367-374. DOI: 10.1078/0944-2006-00072 Go to original source...
  4. BATÁRY, P., BÁLDI, A., KLEIJN, D. and TSCHARNTKE, T. 2010. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences. 278(1713): 1894-1902. DOI: 10.1098/rspb.2010.1923 Go to original source...
  5. BUTLER, S. J., VICKERY, J. A. and NORRIS, K. 2007. Farmland biodiversity and the footprint of agriculture. Science, 315(5810): 381-384. DOI: 10.1126/science.1136607 Go to original source...
  6. CAMPBELL, J. B. and WYNNE, R. H. 2011. Introduction to remote sensing. New York, London: The Guilford press.
  7. CAJAIBA, R. L., PÉRICO, E., DALZOCHIO, M. S., DA SILVA, W. B., BASTOS, R., CABRAL, J. A. and SANTOS, M. 2017. Does the composition of Scarabaeidae (Coleoptera) communities reflect the extent of land use change in the Brazilian Amazon? Ecological Indicators, 74: 285-294. DOI: 10.1016/j.ecolind.2016.11.018 Go to original source...
  8. CONVEY, P., BLOCK, W. and PEAT, H. J. 2003. Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biology, 9: 1718-1730. DOI: 10.1046/j.1365-2486.2003.00691.x Go to original source...
  9. CROWTHER, T. W., THOMAS, S. M., MAYNARD, D. S. et al. 2015. Biotic Interactions Mediate Soil Microbial Feedbacks to Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 122(22): 7033-7038. DOI: 10.1073/pnas.1502956112 Go to original source...
  10. DECAENS, T. 2010. Macroecological patterns in soil communities. Global Ecology and Biogeography, 19(3): 287-302. DOI: 10.1111/j.1466-8238.2009.00517.x Go to original source...
  11. DUIKER, S. W. 2004. Effects of soil compaction. The Pennsylvania State University.
  12. GASTON, K. J. 2000. Global patterns in biodiversity. Nature, 405: 220-227. DOI: 10.1038/35012228 Go to original source...
  13. HANSON, H. I., BIRKHOFER, K., SMITH, H. G., PALMU, E. and HEDLUND, K. 2017. Agricultural land use affects abundance and dispersal tendency of predatory arthropods. Basic and Applied Ecology, 18: 40-49. DOI: 10.1016/j.baae.2016.10.004 Go to original source...
  14. HOLLAND, J. M. and REYNOLDS, C. J. M. 2003. The impact of soil cultivation on arthropod (Coleptera and Araneae) emergence on arable land. Pedobiologia, 47(2): 181-191. DOI: 10.1078/0031-4056-00181 Go to original source...
  15. JONES, C. G., LAWTON, J. H. and SCHACHAK, M. 1994. Organisms as ecosystem engineers. Oikos, 69: 373-86. DOI: 10.2307/3545850 Go to original source...
  16. KOBZA, J., BARANČÍKOVÁ, G., DODOK, R. et al. 2013. Monitoring and assessment of Slovak soils properties and potential. Interim report. Bratislava: Soil Science and Conservation Research Institute.
  17. KOIVULA, M. J. 2011. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys, 100: 287-317. DOI: 10.3897/zookeys.100.1533 Go to original source...
  18. KNOP, E., KLEIJIN, D., HERZOG, F. and SCHMID, B. 2006. Effectiveness of the Swiss agri-environment scheme in promoting biodiversity. Journal of Applied Ecology, 43: 120-127. DOI: 10.1111/j.1365-2664.2005.01113.x Go to original source...
  19. LAL, R. 1988. Effect of macrofauna on soil properties in tropical ecosystems. Agriculture, Ecosystems & Environment, 24(1-3): 101-116. DOI: 10.1016/0167-8809(88)90059-X Go to original source...
  20. LIEFTING, M., WEERENBECK, M., DOOREMALEN, C. and ELLERS, J. 2010. Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod. Functional Ecology, 24(6): 1291-1298. DOI: 10.1111/j.1365-2435.2010.01732.x Go to original source...
  21. MADZARIC, S., CEGLIE, F. G., DEPALO, L. and AL BITAR, L. 2018. Organic vs. Organic - soil arthropods as bioindicators of ecological sustainability in greenhouse system experiment under Mediterranean conditions. Bulletin of Entomological Research, 108(5): 625-635. DOI: 10.1017/S0007485317001158 Go to original source...
  22. MENALLED, F. D., SMITH, R. G., DAUER, J. T. and FOX, T. B. 2007. Impact of agricultural management on carabid communities and weed seed predation. Agriculture, Ecosystems & Environment, 118(1-4): 49-54. DOI: 10.1016/j.agee.2006.04.011 Go to original source...
  23. MEITIYANI and DHARMA, A. P. 2019. Diversity of soil arthropods in different soil stratification layers, the National park of Gede Pangrango Mountain, Cisaurua Resort, West Java, Indonesia. IOP Conf. Series: Earth and Environmental Sciences, 197: 012019. DOI: 10.1088/1755-1315/197/1/012019 Go to original source...
  24. MEYER, S. T., HEUSS, L., FELDHAAR, H., WEISSER, W. W. and GOSSNER, M. M. 2019. Land-use components, abundance of predatory arthropods, and vegetation height affect predation rates in grasslands. Agriculture, Ecosystems and Environment, 270-271: 84-92. DOI: 10.1016/j.agee.2018.10.015 Go to original source...
  25. NAKAMURA, A., PROCTOR, H. and CATTERALL, C. P. 2003. Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration, 4(1): 20-28. DOI: 10.1046/j.1442-8903.4.s.3.x Go to original source...
  26. NAKAMURA, A., CATTERALL, C. P., HOUSE, A. P. N., KITCHING, L. and BURWELL, J. 2007. The use of ants and other soil and litter arthropods as bio-indicators of the impacts of rainforest clearing and subsequent land use. Journal of Insect Conservation, 11(2): 177-186. DOI: 10.1007/s10841-006-9034-9 Go to original source...
  27. NIEDOBOVÁ, J. and FRIC, Z. F. 2014. The adequacy of some collecting techniques for obtaining representative arthropod sample in dry grasslands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62(1): 167-174. DOI: 10.11118/actaun201462010167 Go to original source...
  28. OSLER, G. H. R., VAN VLIET, P. C. J., GAUCI, C. S. and ABBOTT, L. K. 2000. Changes in free living soil nematode and micro-arthropod communities under a canola-wheat-lupin rotation in Western Australia. Australian Journal of Soil Research, 38(1): 47-60. DOI: 10.1071/SR99050 Go to original source...
  29. POTAPOV, A. M., GONCHAROV, A. A., SEMENINA, E. E. et al. 2017. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82: 88-97. DOI: 10.1016/j.ejsobi.2017.09.001 Go to original source...
  30. PSOTA, V. and ŠŤASTNÁ, P. 2016. Arthropods on abandoned appôe trees: comparison of orchard versus alley. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(2): 517-526. DOI: 10.11118/actaun201664020517 Go to original source...
  31. PURTAUF, T., ROSCHEWITZ, I., DAUBER, J., THIES, C., TSCHARNTKE, T. and WOLLERS, V. 2005. Landscape context of organic and conventional farms: Influences on carabid beetle diversity. Agriculture, Ecosystems & Environment, 108(2): 165-174. DOI: 10.1016/j.agee.2005.01.005 Go to original source...
  32. RODRÍGUEZ, E., FERNÁNDEZ-ANERO, F. J., RUIZ, P. and CAMPOS, M. 2006. Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil & Tillage Research, 85(1-2): 229-233. DOI: 10.1016/j.still.2004.12.010 Go to original source...
  33. ROY, S., ROY, M. M., JAISWAL, A. K. and BAITHA, A. 2018. Soil arthropods in maintaining soil health: Thrust areas for sugarcane production systems. Sugar Tech, 20(4): 376-391. DOI: 10.1007/s12355-018-0591-5 Go to original source...
  34. RÜDISSER, J., TASSE, E., PEHAM, T., MEYER, E. and TAPPEINE, U. 2015. The dark side of biodiversity: Spatial application of the biological soil quality indicator (BSQ). Ecological Indicators, 53: 240-246. DOI: 10.1016/j.ecolind.2015.02.006 Go to original source...
  35. SCHON, N. L., MACKAY, A. D., HEDLEY, M. J. and MINO, M. A., 2012. The soil invertebrate contribution to nitrogen mineralization differs between soils under organic and conventional dairy management. Biology and Fertility of Soils, 48(1): 31-42. DOI: 10.1007/s00374-011-0604-y Go to original source...
  36. SIMON, E., HARANGI, S., BARANYAI, E. et al. 2016. Distribution of toxic elements between biotic and abiotic components of terrestrial ecosystem along an urbanization gradient: Soil, leaf, litter and ground beetles. Ecological Indicators, 60: 258-264. DOI: 10.1016/j.ecolind.2015.06.045 Go to original source...
  37. STINNER, B. and HOUSE, G. J. 1990. Arthropods and other invertebrates in conservation-tillage agriculture. Annual Review of Entomology, 35: 299-318. DOI: 10.1146/annurev.en.35.010190.001503 Go to original source...
  38. ŠŤASTNÁ, P. and PSOTA, V. 2013. Arthropod diversity (Arthropod) on abandoned apple trees. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(5): 1405-1422. DOI: 10.11118/actaun201361051405 Go to original source...
  39. TURBÉ, A., TONI, A., BENITO, P., LAVELLE, P., RUIZ, N., VAN DER PUTTEN, W. H., LABOUZE, E. and MUDGAL, S. 2010. Soil biodiversity: functions, threats and tools for policy makers. Report for EC. Bio Intelligence Service, IRD, and NIOO.
  40. WIEZIK, M., WIEZIKOVÁ, A. and SVITOK, M., 2010. Effects of secondary succession in abandoned grassland on the activity of ground-foraging ant assemblages (Hymenoptera: Formicidae). Acta Societatis Zoologicae Bohemicae, 74: 153-160.
  41. XIN, X. L., YANG, W. L., ZHU, Q. G., ZHANG, X. F., ZHU, A. N. and ZHANG, J. B. 2018. Abundance and depth stratification of soil arthropods as influenced by tillage regimes in a sandy loam soil. Soil Use and Management, 34(2): 286-296. DOI: 10.1111/sum.12412 Go to original source...
  42. ZELAZNY, V. F., MARTIN, G. L., TONER, M., GORMAN, M., COLPITTS, M., VEEN, H., GODIN, B., MCINNIS, B., STEEVES, C., WUEST, L. and ROBERTS, M. R. 2007. Our landscape heritage: The story of ecological land classification in New Brunswick. New Brunswick: New Brunswick Department of Natural Resources.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.