Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67(6), 1433-1440 | DOI: 10.11118/actaun201967061433

Anaerobic Acidification of Coconut Water Waste by Lactobacillus acidophilus Culture for Biotechnological Production of Lactic Acid

Darwin, Ulfa Triovanta, Ridho Rinaldi, Atmadian Pratama
Department of Agricultural Engineering, Syiah Kuala University, Banda Aceh 23111, Indonesia

The biotechnological production of lactic acid could be carried out via anaerobic acidification process. In order to achieve an optimal production of lactic acid, the role of inoculum would be essential. The current study aimed to investigate as well as evaluate the effect of inoculum concentration on the anaerobic acidification of coconut water waste for the production of lactic acid. Results showed that the addition of 20% inoculums to the reactor fermenting coconut water waste was sufficient for the optimal production of lactic acid. In the batch process anaerobic acidification of coconut water waste inoculated with 20% inoculums of Lactobacillus acidophilus culture had the yield of lactic acid production, which was about 1.62 mmol lactic acid/mmol glucose while under the continuous operation the yield of lactic acid production obtained, was about 1.15 mmol lactic acid/mmol glucose. During the acidification process in both batch and continuous modes pH dropped significantly from 5.1 to 3.7.

Keywords: acidification, lactic acid, coconut water waste
Grants and funding:

The study was partly funded by the H-index research project of PNBP, Syiah Kuala University.

Received: August 21, 2019; Accepted: October 30, 2019; Published: December 22, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Darwin,, Triovanta, U., Rinaldi, R., & Pratama, A. (2019). Anaerobic Acidification of Coconut Water Waste by Lactobacillus acidophilus Culture for Biotechnological Production of Lactic Acid. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis67(6), 1433-1440. doi: 10.11118/actaun201967061433
Download citation

References

  1. AKPOR, O. B., OTOHINOYI, D. A., OLAOLU, D. T. and ADERIYE, B. I. 2014. Pollutants in wastewater effluents: impacts and remediation processes. International Journal of Environmental Research and Earth Science, 3(3): 50-59.
  2. APHA. 2012. Standard method for the examination of water and wastewater. 22nd Edition. Washington: American Public Health Association.
  3. BOULANGER, A., PINET, E., BOUIX, M., BOUCHEZ, T. and MANSOUR, A. A. 2012. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, 32(12): 2258-2265. DOI: 10.1016/j.wasman.2012.07.024 Go to original source...
  4. CHAUHAN, O. P., ARCHANA, B. S., SINGH, A., RAJU, P. S. and BAWA, A. S. 2014. A refreshing beverage from mature coconut water blended with lemon juice. Journal of food science and technology, 51(11): 3355-3361. DOI: 10.1007/s13197-012-0825-6 Go to original source...
  5. DARWIN, FAZIL, A., ILHAM, M., SARBAINI, S. and PURWANTO. 2017. Kinetics on anaerobic co-digestion of bagasse and digested cow manure with short hydraulic retention time. Research in Agricultural Engineeringg, 63(3): 121-127. DOI: 10.17221/18/2016-RAE Go to original source...
  6. DARWIN, CORD-RUWISCH, R. and CHARLES, W. 2018. Ethanol and lactic acid production from sugar and starch wastes by anaerobic acidification. Engineering in Life Sciences, 18(9): 635-642. DOI: 10.1002/elsc.201700178 Go to original source...
  7. DARWIN. 2019a. Determination of Glucose Concentration in Anaerobic Acidification Cultures by Portable Glucose Monitoring System. Asian Journal of Chemistry, 31(4): 763-766. DOI: 10.14233/ajchem.2019.21593 Go to original source...
  8. DARWIN. 2019b. Rapid Determination of Lactic Acid in Anaerobic Biological Treatment Process by Portable Sensitive Lactate-Biosensor. Biotechnologia, 100(2): 115-120. DOI: 10.5114/bta.2019.85320 Go to original source...
  9. DEY, P. and PAL, P. 2012. Direct production of l (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of membrane science, 389: 355-362. DOI: 10.1016/j.memsci.2011.10.051 Go to original source...
  10. EHIMEN, E. A., HOLM-NIELSEN, J. B., POULSEN, M. and BOELSMAND, J. E. 2013. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renewable energy, 50: 476-480. DOI: 10.1016/j.renene.2012.06.064 Go to original source...
  11. ELUMALAI, E. K., KAYALVIZHI, K. and SILVAN, S. 2014. Coconut water assisted green synthesis of silver nanoparticles. Journal of pharmacy & bioallied sciences, 6(4): 241-245. DOI: 10.4103/0975-7406.142953 Go to original source...
  12. EYAL, A. M. and CANARI, R. 1995. pH dependence of carboxylic and mineral acid extraction by amine-based extractants: effects of pKa, amine basicity, and diluent properties. Industrial & engineering chemistry research, 34(5): 1789-1798. DOI: 10.1021/ie00044a030 Go to original source...
  13. GONZALEZ, M. I., ALVAREZ, S., RIERA, F. A. and ALVAREZ, R. 2008. Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination, 228(1-3): 84-96. DOI: 10.1016/j.desal.2007.08.009 Go to original source...
  14. HOBBS, S. R., LANDIS, A. E., RITTMANN, B. E., YOUNG, M. N. and PARAMESWARAN, P. 2018. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Management, 71: 612-617. DOI: 10.1016/j.wasman.2017.06.029 Go to original source...
  15. HUANG, L. P., JIN, B., LANT, P. and ZHOU, J. 2005. Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal, 23(3): 265-276. DOI: 10.1016/j.bej.2005.01.009 Go to original source...
  16. JASKO, J., SKRIPSTS, E., DUBROVSKIS, V., ZABAROVSKIS, E. and KOTELENECS, V. 2011. Biogas production from cheese whey in two phase anaerobic digestion. In: 10th International scientific conference Engineering for Rural Development. Jelgava, 26.-27. 05. 2011, pp. 373-376.
  17. JOHN, R. P., NAMPOOTHIRI, K. M. and PANDEY, A. 2006. Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 41(4): 759-763. DOI: 10.1016/j.procbio.2005.09.013 Go to original source...
  18. KUTTNER, P., WEIßBÖCK, A. D., LEITNER, V. and JÄGER, A. 2015. Examination of commercial additives for biogas production. Agronomy Research 13(2): 337-347.
  19. LEE, P. R., BOO, C. X. and LIU, S. Q. 2013. Fermentation of coconut water by probiotic strains Lactobacillus acidophilus L10 and Lactobacillus casei L26. Annals of Microbiology, 63(4): 1441-1450. DOI: 10.1007/s13213-013-0607-z Go to original source...
  20. MARINA, A. M. and NURULAZIZAH, S. 2014. Use of coconut versus dairy milk products in Malaysian dishes: comparison of nutritional composition and sensory evaluation. Journal of Food and Nutrition Research, 2(4): 204-208. DOI: 10.12691/jfnr-2-4-12 Go to original source...
  21. MAS, A., TORIJA, M. J., GARCÍA-PARRILLA, M. D. C. and TRONCOSO, A. M. 2014. Acetic acid bacteria and the production and quality of wine vinegar. The Scientific World Journal, eCollection 2014: 394671. Go to original source...
  22. MOLINO, A., NANNA, F., DING, Y., BIKSON, B. and BRACCIO, G. 2013. Biomethane production by anaerobic digestion of organic waste. Fuel, 103: 1003-1009. DOI: 10.1016/j.fuel.2012.07.070 Go to original source...
  23. MOUSAVI, Z. E., MOUSAVI, S. M., RAZAVI, S. H., EMAM-DJOMEH, Z. and KIANI, H. 2011. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology, 27(1): 123-128. DOI: 10.1007/s11274-010-0436-1 Go to original source...
  24. OBIDOA, O., JOSHUA, P. E. and EZE, N. J. 2010. Phytochemical analysis of Cocos nucifera L. Journal of Pharmacy Research, 3(2): 280-286.
  25. PRADO, F. C., LINDNER, J. D. D., INABA, J., THOMAZ-SOCCOL, V., BRAR, S. K. and SOCCOL, C. R. 2015. Development and evaluation of a fermented coconut water beverage with potential health benefits. Journal of functional foods, 12: 489-497. DOI: 10.1016/j.jff.2014.12.020 Go to original source...
  26. PUERARI, C., MAGALHÃES, K. T. and SCHWAN, R. F. 2012. New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Research International, 48(2): 634-640. DOI: 10.1016/j.foodres.2012.06.005 Go to original source...
  27. RADENAHMAD, N., VONGVATCHARANON, U., WITHYACHUMNARNKUL, B. and CONNOR, R. J. 2006. Serum levels of 17β-estradiol in ovariectomized rats fed young-coconut-juice and its effect on wound healing. Songklanagarind Journal of Science and Technology, 28: 897-910.
  28. RAGHAVENDRA, S. N. and RAGHAVARAO, K. S. M. S. 2010. Effect of different treatments for the destabilization of coconut milk emulsion. Journal of food engineering, 97(3): 341-347. DOI: 10.1016/j.jfoodeng.2009.10.027 Go to original source...
  29. ROBINSON, T. P., ABOABA, O. O., KALOTI, A., OCIO, M. J., BARANYI, J. and MACKEY, B. M. 2001. The effect of inoculum size on the lag phase of Listeria monocytogenes. International journal of food microbiology, 70(1-2): 163-173. DOI: 10.1016/S0168-1605(01)00541-4 Go to original source...
  30. ROLFE, M. D., RICE, C. J., LUCCHINI, S., PIN, C., THOMPSON, A., CAMERON, A. D. and PECK, M. W. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of bacteriology, 194(3): 686-701. DOI: 10.1128/JB.06112-11 Go to original source...
  31. ROOPAN, S. M. 2016. An overview of phytoconstituents, biotechnological applications, and nutritive aspects of coconut (Cocos nucifera). Applied biochemistry and biotechnology, 179(8): 1309-1324. DOI: 10.1007/s12010-016-2067-y Go to original source...
  32. RUSSO, JR., L. J. and KIM, H. S. 1996. Membrane-based process for the recovery of lactic acid by fermentation of carbohydrate substrates containing sugars. U.S. Patent No. 5503750. Washington, DC: U.S. Patent and Trademark Office.
  33. SILES, J. A., MARTÍN, M. A., CHICA, A. F. and MARTÍN, A. 2010. Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresource Technology, 101(16): 6315-6321. DOI: 10.1016/j.biortech.2010.03.042 Go to original source...
  34. SHIRAI, K., GUERRERO, I., HUERTA, S., SAUCEDO, G., CASTILLO, A., GONZALEZ, R. O. and HALL, G. M. 2001. Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme and Microbial Technology, 28(4-5): 446-452. DOI: 10.1016/S0141-0229(00)00338-0 Go to original source...
  35. SMITH, M. E. and BULL, A. T. 1976. Studies of the utilization of coconut water waste for the production of the food yeast Saccharomyces fragilis. Journal of Applied Bacteriology, 41(1): 81-95. DOI: 10.1111/j.1365-2672.1976.tb00608.x Go to original source...
  36. SU, C. 2014. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2): 24-38.
  37. SURONO, I. S. 2015. Traditional Indonesian dairy foods. Asia Pacific journal of clinical nutrition, 24(1): 26-30.
  38. VOS, A. T. and ROOS, J. C. 2005. Causes and consequences of algal blooms in Loch Logan, an urban impoundment. Water SA, 31(3): 385-392. Go to original source...
  39. WEN, Y., SCHOUPS, G. and VAN DE GIESEN, N. 2017. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Scientific reports, 7: 43289. DOI: 10.1038/srep43289 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.