Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67(5), 1165-1170 | DOI: 10.11118/actaun201967051165
Runs of Homozygosity as Footprints of Selection in the Norik of Muran Horse Genome
- 1 Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- 2 Department of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
The aim of this study was to analyse the genome-wide distribution of runs of homozygosity (ROH) segments in the genome of Norik of Muran horse and to identify the regions under strong selection pressure. Overall, 25 animals genotyped by the GGP Equine70k chip were included in the study. After SNP pruning, 54479 SNPs (75.72%) covering 2.25 Gb of the autosomal genome were retained for scan of ROH segments distribution. The ROHs were present in the genome of all animals and covered in average 13.17% (295.29 Mb) of autosomal genome expressed by the SNP loci. The highest number of ROHs was identified on autosome 1 (404), while the lowest proportion of autosome residing in ROH showed ECA31 (38). The footprints of selection, characterized by SNPs with extreme frequency in ROHs across specific genomic regions, were defined by the top 0.01 percentile of signals. Overall, nine genomic regions located on seven autosomes (3, 6, 9, 11, 15, 23) were identified. The strongest signal of selection showed three autosomes ECA3, ECA9 and ECA11. The protein-coding genes located within these regions suggested that the identified footprints of selection are most likely consequences of intensive breeding for traits of interest during the grading-up process of the Norik of Muran horse.
Keywords: autozygosity, horse, genomic data, local population, selection sweeps
Grants and funding:
This study was supported by the Slovak Research and Development Agency (APVV-14-0054 and APVV-17-0060) and VEGA (1/0742/17).
Received: August 12, 2019; Accepted: September 24, 2019; Published: October 31, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- BISCARINI, F., COZZI, P., GASPA, G. et al. 2018. detectRUNS: Detect runs of homozygosity and runs of heterozygosity in diploid genomes. Available at: http://orca.cf.ac.uk/108906/ [Accessed: 2019, August 15].
- BRITO, L. F., KIJAS, J. W., VENTURA, R. V. et al. 2017. Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics, 18(1): 229. DOI: 10.1186/s12864-017-3610-0
Go to original source...
- CAGAN, A. and BLASS, T. 2016. Identification of genomic variants putatively targeted by selection during dog domestication. BMC Evol. Biol., 16: 10. DOI: 10.1186/s12862-015-0579-7
Go to original source...
- CERRO-HERREROS, E., SABATER-ARCIS, M., FERNANDEZ-COSTA, J. M. et al. 2018. miR-23b and miR-218 silencing increase Muscleblind-like expression and alleviate myotonic dystrophy phenotypes in mammalian models. Nature Communications, 9: 2482. DOI: 10.1038/s41467-018-04892-4
Go to original source...
- DRUML, T., NEUDITSCHKO, M., GRILZ-SEGER, G. et al. 2018. Population Networks Associated with Runs of Homozygosity Reveal New Insights into the Breeding History of the Haflinger Horse. J Hered., 109(4): 384-392. DOI: 10.1093/jhered/esx114
Go to original source...
- GRILZ-SEGER, G., DRUML, T., NEUDITSCHKO, M. et al. 2019a. Analysis of ROH patterns in the Noriker horse breed reveals signatures of selection for coat color and body size. Anim. Genet., 50(4): 334-346. DOI: 10.1111/age.12797
Go to original source...
- GRILZ-SEGER, G., DRUML, T., NEUDITSCHKO, M. et al. 2019b. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse. BMC Genomics, 20: 174. DOI: 10.1186/s12864-019-5564-x
Go to original source...
- GRILZ-SEGER, G., MESARIČ, M., COTMAN, M. et al. 2018. Runs of Homozygosity and Population History of Three Horse Breeds With Small Population Size. J. Equine. Vet. Sci., 71: 27-34. DOI: 10.1016/j.jevs.2018.09.004
Go to original source...
- GURGUL, A., JASIELCZUK, I., ROPKA-MOLIK, K. et al. 2018. A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland. BMC Genet., 19: 95. DOI: 10.1186/s12863-018-0681-0
Go to original source...
- GURGUL, A., JASIELCZUK, I., SEMIK-GURGUL, E. et al. 2019. Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle. J. Appl. Genet., 60(1): 87-95. DOI: 10.1007/s13353-019-00484-0
Go to original source...
- HALO, M., GRÁCZ, F., ©MELKO, V. et al. 2006. The herd book of Norik of Muran status. [Online]. Available at: http://www.horses.sk/joomla/index.php?option=com_content&view=article&id=52:tatut-plemennej-knihy-norik-muransky&catid=41:norik-muransky&Itemid=18 [Accessed: 2019, May 15].
- HALO, M., MLYNEKOVÁ, E., HORNÁ, M. et al. 2018. Evaluation of Genetic Variability of the Breed Norik of Muran according to Pedigree Information. Czech J. Anim. Sci., 63(5): 195-200. DOI: 10.17221/20/2017-CJAS
Go to original source...
- CHANG, C. C., CHOW C. C., TELLIER, L. C. A. M. et al. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4(1): 7. DOI: 10.1186/s13742-015-0047-8
Go to original source...
- KAMIŃSKI, S., HERING, D. M., JAWORSKI, Z. et al. 2017. Assessment of genomic inbreeding in Polish Konik horses. Pol. J. Vet. Sci., 20(3): 603-605. DOI: 10.1515/pjvs-2017-0074
Go to original source...
- KASARDA, R., MORAVČÍKOVÁ, N., TRAKOVICKÁ, A. et al. 2015. Genome-wide selection signatures in Pinzgau cattle. Potravinárstvo, 9(1): 268-274.
Go to original source...
- KIM, E. S., ELBELTAGY, A. R., ABOUL-NAGA, A. M. et al. 2016. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity, 116(3): 255-264. DOI: 10.1038/hdy.2015.94
Go to original source...
- KUKUČKOVÁ, V., MORAVČÍKOVÁ, N., FERENČAKOVIĆ, M. et al. 2017. Genomic characterization of Pinzgau cattle: genetic conservation and breeding perspectives. Conserv. Genet., 18(4): 893-910. DOI: 10.1007/s10592-017-0935-9
Go to original source...
- LITOSH, V. A., ROCHMAN, M., RYMER, J. K., et al. 2017. Calpain-14 and its association with eosinophilic esophagitis. J. Allergy Clin. Immunol., 139(6): 1762-1771. DOI: 10.1016/j.jaci.2016.09.027
Go to original source...
- MARTÍN-VICENTE, M., MEDRANO, L. M., RESINO, S. et al. 2017. TRIM25 in the Regulation of the Antiviral Innate Immunity. Front. Immunol., 8: 1187. DOI: 10.3389/fimmu.2017.01187
Go to original source...
- METZGER, J., KARWATH, M., TONDA, R., et al. 2015. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, 16: 764. DOI: 10.1186/s12864-015-1977-3
Go to original source...
- NOLTE, W., THALLER, G. and KUEHN, C. 2019. Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse. PLoS One, 14(4): e0215913. DOI: 10.1371/journal.pone.0215913
Go to original source...
- PERIPOLLI, E., MUNARI, D. P., SILVA, M. V. G. B. et al. 2017. Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet., 48(3): 255-271. DOI: 10.1111/age.12526
Go to original source...
- PJONTEK, J., KADLEČÍK, O., KASARDA, R. et al. 2012. Pedigree analysis in four Slovak endangered horse breeds. Czech J. Anim. Sci., 57(2): 54-64. DOI: 10.17221/5132-CJAS
Go to original source...
- PORTER, V., ALDERSON, L., HALL, S. J. G. et al. 2016. Mason's World Encyclopedia of Livestock Breeds and Breeding, 2 Volume Pack. Oxfordshire: CABI.
- SAUNDERS, J., WISIDAGAMA, D. R., MORFORD, T. et al. 2016. Maximal Expression of the Evolutionarily Conserved Slit2 Gene Promoter Requires Sp1. Cell. Mol. Neurobiol., 36(6): 955-964. DOI: 10.1007/s10571-015-0281-8
Go to original source...
- SOMEKAWA, S., IMAGAWA, K., HAYASHI, H. et al. 2012. Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogenesis. PNAS, 109(30): 12064-12069. DOI: 10.1073/pnas.1207210109
Go to original source...
- TAKANO, K., OGASAWARA, N., MATSUNAGA, T. et al. 2016. A novel nonsense mutation in the NOG gene causes familial NOG-related symphalangism spectrum disorder. Human Genome Variation, 3: 16023.
Go to original source...
- WANG, K. Y., HUANG, R. Y., TONG, X. Z. et al. 2019. Molecular and clinical characterization of TMEM71 expression at the transcriptional level in glioma. CNS Neurosci. Ther., 25(9): 965-975. DOI: 10.1111/cns.13137
Go to original source...
- WANG, Y., KOWALSKI, P. E., THALMANN, I. et al. 1998. Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proc. Natl. Acad. Sci. USA, 95(26): 15345-15350. DOI: 10.1073/pnas.95.26.15345
Go to original source...
- XIA, J., FAN, H., CHANG, T. et al. 2017. Searching for new loci and candidate genes for economically important traits through gene-based association analysis of Simmental cattle. Sci. Rep., 7: 42048. DOI: 10.1038/srep42048
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.