Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67(5), 1131-1137 | DOI: 10.11118/actaun201967051131
Assessment of Retention Potential and Soil Organic Carbon Density of Agriculturally used Chernozems, Cambisols and Fluvisols
- 1 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
- 2 Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
- 3 Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27 Praha, Czech Republic
Climate change and the increasing frequency of climatic extremes have led to growing concerns over the sustainability of agriculture during recent years. In this context, soil retention and carbon storage are becoming widely discussed. The aim of this study was to evaluate the retention potential (RP) and soil organic carbon density (SOCD) of Chernozem, Cambisol and Fluvisol topsoil under agricultural management. Despite the different natural assumptions of these soil types, no significant statistical difference was found there. Mean RP values of the soil types varied from 39 to 40 mm and mean SOCD values from 23 to 28 t/ha. This finding may suggest that long-term agricultural management can suppress the naturally diverse potential for water retention and carbon storage of the individual soil types. Comparison of SOCD of the studied soils with agricultural soils in similar studies showed that most of the observed values can be considered as average. Despite this fact, a very strong local degradation has been revealed indicating poor agricultural management. Especially in such cases, there is an urgent need to adjust the management of the agricultural land fund (e.g. increased application of organic fertilizers, change in crop rotation) in order to increase carbon stocks and to improve the water retention capacity of soils.
Keywords: soil retention potential, arable land, climate change, soil organic carbon
Grants and funding:
This research was supported by National Agency for Agricultural Research by project QK1720303 - Retention capacity of the soil and landscape and possibilities of increasing in terms of climate change (70%), by project QK1920280 Innovation of the Evaluated Soil-Ecological Units (BPEJ) for state administration needs (20%) and by project QK 1810233 - Quantification of the impact of farming management on soil erosion, soil quality and yields of crops with proposals of the environmentally friendly cultivation technologies (10%).
Received: July 25, 2019; Accepted: September 4, 2019; Published: October 31, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- ARROUAYS, D., BALESDENT, J., GERMON, J. C. et al. (Eds.). 2002. Mitigation of the greenhouse effect. Increasing carbon stocks in French agricultural soils? An assessment report compiled by the French Institute for Agricultural Research (INRA) on the request of the French Ministry for Ecology and Sustainable Development, Scientific Assessment Unit for Expertise. Paris, France: INRA.
- BATJES, N. H. 1996. Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma, 71(1-2): 31-52. DOI: 10.1016/0016-7061(95)00089-5
Go to original source...
- BERANOVÁ, R. and KYSELÝ, J. 2018. Trends of precipitation characteristics in the Czech Republic over 1961-2012, their spatial patterns and links to temperature and the North Atlantic Oscillation. International Journal of Climatology, 38: e596-e606. DOI: 10.1002/joc.5392
Go to original source...
- BRÁZDIL, R., TRNKA, M., MIKŠOVSKÝ, J., ŘEZNÍČKOVÁ, L. and DOBROVOLNÝ, P. 2015. Spring-summer droughts in the Czech Land in 1805-2012 and their forcings. International Journal of Climatology, 35(7): 1405-1421. DOI: 10.1002/joc.4065
Go to original source...
- CHEN, X. B., ZHENG, H., ZHANG, W., HE, X. Y., LI, L., WU, J. S. HUANG, D. Y. and SU, Y. R. 2014. Effects of land cover on soil organic carbon stock in a karst landscape with discontinuous soil distribution. Journal of Mountain Science, 11(3): 774-781. DOI: 10.1007/s11629-013-2843-x
Go to original source...
- CHEN, Y., LIU, R., BARRETT, D., GAO, L., ZHOU, M., RENZULLO, L. and EMELYANOVA, I. 2015. A spatial assessment framework for evaluating flood risk under extreme climates. Science of the Total Environment, 538: 512-523. DOI: 10.1016/j.scitotenv.2015.08.094
Go to original source...
- COLLENTINE, D. and FUTTER, M. N. 2018. Realising the potential of natural water retention measures in catchment flood management: Trade-offs and matching interests. Journal of Flood Risk Management, 11(1): 76-84. DOI: 10.1111/jfr3.12269
Go to original source...
- ELBL, J., VAVERKOVÁ, M. D., ADAMCOVÁ, D., PLOŠEK, L., KINTL, A., LOŠÁK, T., HYNŠT, J. and KOTOVICOVÁ, J. 2015. Influence of fertilization on microbial activities, soil hydrophobicity and mineral nitrogen leaching. Ecological Chemistry and Engineering S, 21(4): 661-675. DOI: 10.1515/eces-2014-0048
Go to original source...
- FAO and CMCC. 2017. Global Soil Organic Carbon Database (at 30 arcsec). Rome: Food and Agriculture Organization of the United Nations and Euro-Mediterranean Center on Climate Change Foundation.
- HAGEMANN, N., JOSEPH, S., SCHMIDT, H. P., KAMMANN, C. I., HARTER, J., BORCH, T., YOUNG, R. B., VARGA, K., TAHERYMOOSAVI, S., ELLIOTT, K. W. and MCKENNA, A. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature communications, 8(1): 1089. DOI: 10.1038/s41467-017-01123-0
Go to original source...
- HANEL, M., PAVLÁSKOVÁ, A. and KYSELÝ, J. 2016. Trends in characteristics of sub-daily heavy precipitation and rainfall erosivity in the Czech Republic. International Journal of Climatology, 36(4): 1833-1845. DOI: 10.1002/joc.4463
Go to original source...
- HOLLIS, J. M., JONES, R. J. A. and PALMER, R. C. 1977. The effects of organic matter and particle size on the water-retention properties of some soils in the West Midlands of England. Geoderma, 17(3): 225-238. DOI: 10.1016/0016-7061(77)90053-2
Go to original source...
- ISO/TC 190/SC 3 COMMITTEE. 1998. Soil Quality - Determination of Organic Carbon by Sulfochromic Oxidation. ISO 14235. International Standards Office.
- ISO/TC 190/SC 3 COMMITTEE. 2005. Soil Quality - Determination of pH. ISO 10390. International Standards Office.
- KINTL, A., ELBL, J., LOŠÁK, T., VAVERKOVÁ, M. D. and NEDĚLNÍK, J. 2018. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: effects on biomass production and leaching of mineral nitrogen. Sustainability, 10(10): 3367-3380. DOI: 10.3390/su10103367
Go to original source...
- KUBÁT, J., CERHANOVÁ, D., NOVÁKOVÁ, J., KLEMENT, V., ČERMÁK, P. and DOSTÁL, J. 2004. Total organic C and its decomposable part in arable soils in the Czech Republic. Archives of Agronomy and Soil Science, 50(1): 21-32. DOI: 10.1080/03650340310001627568
Go to original source...
- LIU, R., WANG, M. and CHEN, W. 2018. The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landscape and Urban Planning, 169: 241-249. DOI: 10.1016/j.landurbplan.2017.09.002
Go to original source...
- MANOJLOVIĆ, M., AĆÌN, V. and ŠEREMEŠIĆ, S. 2008. Long-term effects of agronomic practices on the soil organic carbon sequestration in Chernozem. Archives of Agronomy and Soil Science, 54(4): 353-367. DOI: 10.1080/03650340802022845
Go to original source...
- MIKHAILOVA, E. A. and POST, C. J. 2006. Organic carbon stocks in the Russian Chernozem. European Journal of Soil Science, 57(3): 330-336. DOI: 10.1111/j.1365-2389.2005.00741.x
Go to original source...
- MINASNY, B. and MCBRATNEY, A. B. 2018. Limited effect of organic matter on soil available water capacity. European journal of soil science, 69(1): 39-47. DOI: 10.1111/ejss.12475
Go to original source...
- MINASNY, B., MALONE B. P., MCBRATNEY, A. B., ANGERS, D. A., ARROUAYS, D., CHAMBERS, A., CHAPLOT, V., CHEN, Z. S., CHENG, K., DAS, B. S. and FIELD, D. J., 2017. Soil carbon 4 per mille. Geoderma, 292: 59-86. DOI: 10.1016/j.geoderma.2017.01.002
Go to original source...
- OTALVARO, I. F., NETO, M. P. C., DELAGE, P. and CAICEDO, B. 2016. Relationship between soil structure and water retention properties in a residual compacted soil. Engineering geology, 205: 73-80. DOI: 10.1016/j.enggeo.2016.02.016
Go to original source...
- PACHEPSKY, Y. A., TIMLIN, D. J. and RAWLS, W. J. 2001. Soil water retention as related to topographic variables. Soil Science Society of America Journal, 65(6): 1787-1795. DOI: 10.2136/sssaj2001.1787
Go to original source...
- PACHEPSKY, Y. A., TIMLIN, D. J. and VARALLYAY G. Y. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal, 60(3): 727-733. DOI: 10.2136/sssaj1996.03615995006000030007x
Go to original source...
- PAN, G., LI, L., WU, L. and ZHANG, X. 2004. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology, 10(1): 79-92. DOI: 10.1111/j.1365-2486.2003.00717.x
Go to original source...
- OGLE, S. M., JAY BREIDT, F., EVE, M. D. and PAUSTIAN, K. 2003. Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Global Change Biology, 9(11): 1521-1542. DOI: 10.1046/j.1365-2486.2003.00683.x
Go to original source...
- QUEREJETA, J. I. 2017. Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. In: JOHNSON, N. (Ed.). Mycorrhizal Mediation of Soil. Elsevier, pp. 299-317.
Go to original source...
- RAWLS, W. J., PACHEPSKY, Y. A., RITCHIE, J. C., SOBECKI, T. M. and BLOODWORTH, H. 2003. Effect of soil organic carbon on soil water retention. Geoderma, 116(1-2): 61-76. DOI: 10.1016/S0016-7061(03)00094-6
Go to original source...
- RUBIO, C. M., LLORENS, P. and GALLART, F. 2008. Uncertainty and efficiency of pedotransfer functions for estimating water retention characteristics of soils. European Journal of Soil Science, 59(2): 339-347. DOI: 10.1111/j.1365-2389.2007.01002.x
Go to original source...
- RULFOVÁ, Z., BERANOVÁ, R. and KYSELÝ, J. 2017. Climate change scenarios of convective and large-scale precipitation in the Czech Republic based on EURO-CORDEX data. International Journal of Climatology, 37(5): 2451-2465. DOI: 10.1002/joc.4857
Go to original source...
- ŠTĚPÁNEK, P., ZAHRADNÍČEK, P., FARDA, A., SKALÁK, P., TRNKA, M., MEITNER, J. and RAJDL, K. 2016. Projection of drought-inducing climate conditions in the Czech Republic according to Euro-CORDEX models. Climate Research, 70(2-3): 179-193. DOI: 10.3354/cr01424
Go to original source...
- TRNKA, M., BRÁZDIL, R., MOŽNÝ, M., ŠTĚPÁNEK, P., DOBROVOLNÝ, P., ZAHRADNÍČEK, P., BALEK, J., SEMERÁDOVÁ, D., DUBROVSKÝ, M., HLAVINKA, P. and EITZINGER, J. 2015. Soil moisture trends in the Czech Republic between 1961 and 2012. International Journal of Climatology, 35(13): 3733-3747. DOI: 10.1002/joc.4242
- ULYETT, J., SAKRABANI, R., KIBBLEWHITE, M. and HANN, M. 2014. Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. European Journal of Soil Science, 65(1): 96-104. DOI: 10.1111/ejss.12081
Go to original source...
- VLČEK, L., KOCUM, J., JANSKÝ, B., ŠEFRNA, L. and KUČEROVÁ, A. 2012. Retention potential and hydrological balance of a peat bog: case study of Rokytka Moors, Otava River headwaters, sw. Czechia [in Czech: Retenční potenciál a hydrologická bilance horského vrchoviště: případová studie Rokytecké slatě, povodí horní Otavy, JZ. Česko]. Geografie, 117(4): 395-414.
Go to original source...
- WEBER, J., KARCZEWSKA, A., DROZD, J., LICZNAR, M., LICZNAR, S., JAMROZ, E. and KOCOWICZ, A. 2007. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biology and Biochemistry, 39(6): 1294-1302. DOI: 10.1016/j.soilbio.2006.12.005
Go to original source...
- WONG, J. T. F., CHEN, Z., CHEN, X., NG, C. W. W. and WONG, M. H. 2017. Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. Journal of soils and sediments, 17(3): 590-598. DOI: 10.1007/s11368-016-1401-x
Go to original source...
- WÖSTEN, J. H. M., PACHEPSKY, Y. A. and RAWLS, W. J. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of hydrology, 251(3-4): 123-150. DOI: 10.1016/S0022-1694(01)00464-4
Go to original source...
- XIA, L., XIA, Y., LI, B., WANG, J., WANG, S., ZHOU, W. and YAN, X. 2016. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agriculture, Ecosystems & Environment, 231: 24-33. DOI: 10.1016/j.agee.2016.06.020
Go to original source...
- XU, X., LIU, W., ZHANG, C. and KIELY, G. 2011. Estimation of soil organic carbon stock and its spatial distribution in the Republic of Ireland. Soil Use and Management, 27(2): 156-162. DOI: 10.1111/j.1475-2743.2011.00342.x
Go to original source...
- ZBÍRAL, J. 2016. Analysis of soils I.: Unified techniques [in Czech: Analýza půd I: Jednotné pracovní postupy]. 4th Edition. Brno: Ústřední kontrolní a zkušební ústav zemědělský.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.