Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67(2), 463-470 | DOI: 10.11118/actaun201967020463

The Use of Phytohormones in Production of Fruit Tree Rootstocks in Nursery Without Irrigation

Jan Wolf, Tomáš Kiss, Rostislav Venuta, Tomáš Nečas
Mendel University in Brno, Faculty of Horticulture in Lednice, Department of Fruit Growing, Valtická 337, 691 44 Lednice, Czech Republic

The most commonly used phytohormone to reduce the impact of drought is 24-epibrassinolide (EBR). In this study, EBR was applied over two years on young rootstocks of peach (B-VA-1) and myrobalan (Vanovice myrobalan) seedlings. Young rootstocks were treated by EBR at different concentrations, IAA and a mixture of EBR with IAA. The best results in seedling height of Vanovice myrobalan in both years had the treatment of 0.05% IAA, 549.69 mm (2016) and 553.77 mm (2017). On the other hand, on the crown root thickness was affected the most in 2016 by treatment of EBR 0.06 ppm (5.5 mm) and in 2017 by EBR 0.01 ppm (7.5mm). At B-VA-1 rootstock, the highest seedlings in 2016 were measured after EBR + IAA treatment (1573.18 mm) and in 2017 after IAA treatment (682.75 mm). The highest thickness of the crown root was recorded in 2016 after EBR and IAA (17.76 mm) and in 2017 after EBR 0.1 ppm (8.08 mm) treatments. At more than half of the treatments the control variant was evaluated as a variant with the least satisfying results. According to the results EBR and IAA are possibly increasing the quality of the rootstocks in conditions of a nursery without an irrigation.

Keywords: Prunus persica, Prunus cerasifera, fruit nursery, brassinosteroids, drought, 24-epibrassinolide, IAA
Grants and funding:

This research was funded by NAZV/KUS project No QJ1510081 by the Ministry of Agriculture of the Czech Republic.

Received: September 5, 2018; Accepted: January 25, 2019; Published: April 29, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wolf, J., Kiss, T., Venuta, R., & Nečas, T. (2019). The Use of Phytohormones in Production of Fruit Tree Rootstocks in Nursery Without Irrigation. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis67(2), 463-470. doi: 10.11118/actaun201967020463
Download citation

References

  1. AL-HINIA, Y. K. and ROPER, T. R. 2004. Rootstock Effects on Growth and Quality of 'Gala' Apples. HortScience, 39(6): 1231 - 1233. DOI: 10.21273/HORTSCI.39.6.1231 Go to original source...
  2. ALI, B., HASAN, S. A., HAYAT, S., HAYAT, Q., YADAV, S., FARIDUDDIN, Q. and AHMAD, A. 2008. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L, Wilczek). Environ. Exp. Bot., 62(2): 153 - 159. DOI: 10.1016/j.envexpbot.2007.07.014 Go to original source...
  3. BAJGUZ, A. and HAYAT, S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem., 47(1): 1 - 8. DOI: 10.1016/j.plaphy.2008.10.002 Go to original source...
  4. BAJGUZ, A. and TRETYN, A. 2003. The chemical characteristic and distribution of brassinosteroids in plants, Phytochemistry, 62(7): 1027 - 1046. DOI: 10.1016/S0031-9422(02)00656-8 Go to original source...
  5. CLOUSE, S. D. and SASSE, J. M. 1998. Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49(1): 427 - 451. DOI: 10.1146/annurev.arplant.49.1.427 Go to original source...
  6. FAROOQ, M., WAHID, A., BASRA, S. M. A. and ISLAM-UD-DIN, 2009. Improving water relations and gas Exchange with brassinosteroids in rice under drought stress. J. Agron. Crop Sci., 195(4): 262-269. DOI: 10.1111/j.1439-037X.2009.00368.x Go to original source...
  7. HAYAT, S. and AHMAD, A. 2003. Brassinosteroids: Bioactivity and Crop Productivity. Dordrecht: Kluwer Academic Publishers.
  8. HAYAT, S., HASAN, S. A., HAYAT, Q. and AHMAD, A. 2010. Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma, 239(2 - 4): 3-14. DOI: 10.1007/s00709-009-0075-2 Go to original source...
  9. HNILIČKA, F., HNILIČKOVÁ, H., MARTINKOVÁ, J. and BLÁHA, L. 2007. The influence of drought and the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Cereal Research Communications, 35(2): 457 - 460. DOI: 10.1556/CRC.35.2007.2.73 Go to original source...
  10. HU, W. H., YAN, X. H., XIAO, Y. A., ZENG, J. J., QI, H. J. and OGWENO, J. O. 2013. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150(4): 232 - 237. DOI: 10.1016/j.scienta.2012.11.012 Go to original source...
  11. KAGALE, S., DIVI, U. K., KROCHKO, J. E., KELLER, W. A. and KRISHNA, P. 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225(2): 353 - 364. DOI: 10.1007/s00425-006-0361-6 Go to original source...
  12. KHRIPACH, V. A., LAKHVIN, F. A. and ZHABINSKII, V. N. 1993. Brassinosteroidy (Brassinosteroids). Minsk: Nauka i Tekhnika.
  13. KRISHNA, P. 2003. Brassinosteroid-mediated stress responses. J. Plant Growth. Regul., 22(4): 289 - 297. DOI: 10.1007/s00344-003-0058-z Go to original source...
  14. LI, Y. H., LIU, Y. J., XU, X. L., JIN, M., AN, L. Z. and ZHANG, H. 2012. Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia plantarum, 56(1): 192-196. DOI: 10.1007/s10535-012-0041-2 Go to original source...
  15. MANDAVA, N. B. 1988. Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 39(1): 23 - 52. DOI: 10.1146/annurev.pp.39.060188.000323 Go to original source...
  16. MÜSSIG, C. and ALTMANN, T. 1999. Physiology and molecular mode of action of brassinosteroids. Plant. Physiol. Biochem., 37(5): 363 - 372 DOI: 10.1016/S0981-9428(99)80042-4 Go to original source...
  17. PUSTOVOITOVA, T. N., ZHDANOVA, N. E. and ZHOLKEVICH, V. N. 2000. Epibrassinolide Increases Plant Drought Resistance. Doklady Biochemistry and Biophysics, 376(1 - 6): 36 - 38. DOI: 10.1023/A:1018852110393 Go to original source...
  18. SASSE, J. M. 2003. Physiological actions of brassinosteroids: an update. J. Plant Growth Regul., 22(4): 276 - 288. DOI: 10.1007/s00344-003-0062-3 Go to original source...
  19. SAZO, M. M. and ROBINSON, T. L. 2001. The use of plant growth regulators for branching of nursery trees in NY State. New York Fruit Quarterly, 19(2): 5 - 9.
  20. TEALE, W. D., PAPONOV, I. A. and PALME, K. 2006. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol., 7(11): 847-859 DOI: 10.1038/nrm2020 Go to original source...
  21. VESELOV, D. S., SABIRZHANOVA, I. B., SABIRZHANOV, B. E. and CHEMERIS, A. V. 2008. Changes in expansin gene expression, IAA content, and extension growth of leaf cells in maize plants subjected to salinity. J. Plant. Physiol. Russ., 55(1): 101 - 106. DOI: 10.1134/S1021443708010123 Go to original source...
  22. WASILEWSKA, A., VLAD, F., SIRICHANDRA, C., REDKO, Y., JAMMES, F., VALON, C. and LEUNG, J. 2008. An update on abscisic acid signaling in plants and more... Molecular plant, 1(2): 198 - 217. DOI: 10.1093/mp/ssm022 Go to original source...
  23. XIE, Z. J., JIANG, D., CAO, W. X., DAI, T. B. and JING, Q. 2003. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statuses. Plant Growth Regul., 41(2): 117 - 127. DOI: 10.1023/A:1027371906349 Go to original source...
  24. YOKOTA, T. 1997. The structure, biosynthesis and function of brassinosteroids. Trends in Plant Science, 2(4): 137-143. DOI: 10.1016/S1360-1385(97)01017-0 Go to original source...
  25. YUAN, G. F., JIA, C. G., LI, Z., SUN, B., ZHANG, L. P., LIU, N., and WANG, Q. M. 2010. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126(2): 103 - 108. DOI: 10.1016/j.scienta.2010.06.014 Go to original source...
  26. ZHAO, M. R., HAN, Y. Y., FENG, Y. N., LI, F., and WANG, W. 2012. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant cell reports, 31(4): 671 - 685. DOI: 10.1007/s00299-011-1185-9 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.