Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67(1), 345-359 | DOI: 10.11118/actaun201967010345

Milk Protein Analysis: an Overview of the Methods - Development and Application

Robert Kala1, Eva Samková1, Oto Hanuš2, Lenka Pecová1, Kęstutis Sekmokas3, Dalia Riaukienė3
1 Department of Food Biotechnologies and Agricultural Products Quality, Faculty of Agriculture, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
2 Dairy Research Institute, Ltd., Ke Dvoru 791/12a, 160 00 Prague, Czech Republic
3 SE "Pieno Tyrimai", Radvilu Dvaro str. 31, LT-48331 Kaunas, Lithuania

Milk protein content is an important component of milk, especially from a nutritional point of view and also for payment purposes. The aim of work was to draw up an overview on reference and routine methods for protein determination. Reference methods perform accurate analyses comply according to the International Standard ISO whereas routine methods perform analyses using routine instrumental techniques for faster and cheaper results with acceptable accuracy and a large number of processed samples. In most of cases, using of routine indirect methods for milk protein analysis requires their specific calibrations according to biological kind of measured milk (cow's, goat's or sheep's milk) or specific conditions of milk technology treatment. Also, the quality control measures have a significant role for result determination reliability.

Keywords: dairy cow, goat, sheep, raw milk, nitrogen matters, crude and true milk proteins, reference methods, routine methods
Grants and funding:

Supported by the Ministry of Agriculture of the Czech Republic, project No. QJ1510339 and the Grant Agency of University of South Bohemia, project No. 002/2016/Z.

Received: August 8, 2018; Accepted: October 22, 2018; Published: February 28, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kala, R., Samková, E., Hanuš, O., Pecová, L., Sekmokas, K., & Riaukienė, D. (2019). Milk Protein Analysis: an Overview of the Methods - Development and Application. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis67(1), 345-359. doi: 10.11118/actaun201967010345
Download citation

References

  1. AALAEI, K., RAYNER, M., TAREKE, E. et al. 2016. Application of a dye-binding method for the determination of available lysine in skim milk powders. Food Chem., 196: 815-820. DOI: 10.1016/j.foodchem.2015.10.004 Go to original source...
  2. AERNOUTS, B., POLSHIN, E., LAMMERTYN, J. et al. 2011. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? J. Dairy Sci., 94(11): 5315-5329. DOI: 10.3168/jds.2011-4354 Go to original source...
  3. ARAZI, A., PINSKI, N., SCHCOLNIK, T. et al. 2012. Innovations arising from applied research on a new on-line milk analyzer and a behavior meter. In: BOUCHE, R., DERKIMBA, A. and CASABIANCA, F. (Eds.). New Trends for Innovation in the Mediterranean Animal Production. 1st Edition. Wageningen: Wageningen Academic Publishers, pp. 34-43. Go to original source...
  4. ASHWORTH, U. S. 1966. Determination of protein in dairy products by dye-binding. J. Dairy Sci., 49(2): 133-137. DOI: 10.3168/jds.S0022-0302(66)87812-8 Go to original source...
  5. ATTAIE, R. and RICHTER, R. L. 2000. Size distribution of fat globules in goat milk. J. Dairy Sci., 83(5): 940-944. DOI: 10.3168/jds.S0022-0302(00)74957-5 Go to original source...
  6. BARBANO, D. M. and CLARK, J. L. 1989. Infrared milk analysis - challenges for the future. J. Dairy Sci., 72(6): 1627-1636. DOI: 10.3168/jds.S0022-0302(89)79275-4 Go to original source...
  7. BARBANO, D. M. and DELLAVALLE, M. E. 1987. Rapid method for determination of milk casein content by infrared analysis. J. Dairy Sci., 70(8): 1524-1528. DOI: 10.3168/jds.S0022-0302(87)80179-0 Go to original source...
  8. BARBANO, D. M. and LYNCH, J. M. 1990. Proteins - Determination of true and nonprotein nitrogen. In: Proceedings of the 23rd International Dairy Congress. Montreal, 7-12 October. Brussels: International Dairy Federation, pp. 1322-1333.
  9. BARBANO, D. M. and LYNCH, J. M. 1992. Crude and protein nitrogen bases for protein measurement and their impact on current testing accuracy. J. Dairy Sci., 75(11): 3210-3217. DOI: 10.3168/jds.S0022-0302(92)78086-2 Go to original source...
  10. BARBANO, D. M., LYNCH, J. M. and FLEMING, J. R. 1991. Direct and indirect determination of true protein content of milk by Kjeldahl analysis: collaborative study. J. Assoc. Off. Anal. Chem., 74(2): 281-288. Go to original source...
  11. BARD, A. J. and FAULKNER, L. R. 2001. Electrochemical methods. 2nd Edition. New York: John Wiley & Sons, Inc.
  12. BASSBASI, M., PLATIKANOV, S., TAULER, R. et al. 2014. FTIR-ATR determination of solid non fat (SNF) in raw milk using PLS and SVM chemometric methods. Food Chem., 146: 250-254. DOI: 10.1016/j.foodchem.2013.09.044 Go to original source...
  13. BEDEN, B. and LAMY, C. 1988. Introduction and Historical Survey - Chapter 5. Infrared Reflectance Spectroscopy. In: GALE, R. J. (Ed.). Spectroelectrochemistry: theory and practice. 1st Edition. New York: Plenum Press, pp. 189-193. Go to original source...
  14. BELLOQUE, J. and RAMOS, M. 1999. Application of NMR spectroscopy to milk and dairy products. Trends Food Sci. Technol., 10(10): 313-320. DOI: 10.1016/S0924-2244(00)00012-1 Go to original source...
  15. BENZIGER, J. 1995. Infrared Spectroscopy of Surfaces. In:: HUBBARD, A. T. (Ed.). The Handbook of Surface Imaging and Visualization. 1st Edition. Boca Raton: CRC Press, pp. 265-276. Go to original source...
  16. BIGGS, D. A. 1978. Instrumental infrared estimation of fat, protein, and lactose in milk: collaborative study. J. Assoc. Official Anal. Chem., 61(5): 1015-1034. Go to original source...
  17. BOGOMOLOV, A., DIETRICH, S., BOLDRINI, B. et al. 2012. Quantitative determination of fat and total protein in milk based on visible light scatter. Food Chem., 134(1): 412-418. DOI: 10.1016/j.foodchem.2012.02.077 Go to original source...
  18. BOŘECKÝ, K. and OLBRECHT, H. 1974. Coulometric determination of nitrogen [in Czech: Coulometrické stanovení dusíku]. Krmiv., 6: 142-145.
  19. BOTARO, B. G., CORTINHAS, C. S., MESTIERI, L. et. al. 2011. Prediction of bovine milk true protein content by mid-infrared spectroscopy. Cienc. Rural, 41(8): 1472-1474. DOI: 10.1590/S0103-84782011000800028 Go to original source...
  20. BRAUNER, J., FICNAR, J. and KUBÍN, V. 1981. Coulometric determination of milk proteins [in Czech: Coulometrické stanovení mléčných proteinů]. Mlék. Listy, 7(4): 87-89, 455-457.
  21. CARBONÉ, R., DIEZ, M. C., BERNA, D. et al. 1976. Simplified method for determining proteins in liquid or dried milk, using amido black. Alimentaria, 76: 41-45.
  22. CLARE, D. A. and SWAISGOOD, H. E. 2000. Bioactive milk peptides: a prospectus. J. Dairy Sci., 83(6): 1187-1195. DOI: 10.3168/jds.S0022-0302(00)74983-6 Go to original source...
  23. CNI. 1973. Methods for testing of milk and milk products [in Czech: Metody zkoušení mléka a tekutých mléčných výrobků]. CSN 57 0530:1973. Prague: Czech Normalization Institute.
  24. CNI. 1993. Raw cow's milk for dairy treatment and processing [in Czech: Syrové kravské mléko pro mlékárenské ošetření a zpracování]. CSN 57 0529:1993. Prague: Czech Normalization Institute.
  25. CNI. 1999. Determination of milk composition by mid-infrared analyzer [in Czech: Stanovení složení mléka infračerveným absorpčním analyzátorem]. CSN 57 0536:1999. Prague: Czech Normalization Institute.
  26. CNI. 2005. Conformity assessment - General requirements for the competence of testing and calibration laboratories [in Czech: Posuzování shody - Všeobecné požadavky na způsobilost zkušebních a kalibračních laboratoří]. CSN EN ISO/IEC 17025:2005. Prague: Czech Normalization Institute.
  27. COLE, E. R. 1969. Alternative methods to Kjeldhal estimation of protein nitrogen. Rev. Pure Appl. Chem., 19(1 - 2): 109-130. Go to original source...
  28. COLEMAN, D. A. and MOSS, B.R. 1989. Effects of several factors on quantification of fat, protein, and somatic cells in milk. J. Dairy Sci., 72: 3295-3303. DOI: 10.3168/jds.S0022-0302(89)79491-1 Go to original source...
  29. COSMT. 2002. Milk and milk products - Determination of nitrogen content - Routine method using combustion according to the Dumas principle [in Czech: Mléko a mléčné výrobky - Stanovení obsahu dusíku - Rutinní metoda s užitím spalování dle Dumase]. CSN EN ISO 14891:2002 (57 0527). Prague: Czech Office for Standards, Metrology and Testing.
  30. COSMT. 2009. Milk and milk products - Guidance on sampling [in Czech: Mléko a mléčné výrobky - Směrnice pro odběr vzorků]. CSN ISO 707 (57 0003). Prague: Czech Office for Standards, Metrology and Testing.
  31. COSMT. 2014a. Milk and milk products - Determination of nitrogen content - Part 1: Kjeldahl principle and crude protein [in Czech: Mléko - Stanovení obsahu dusíku - Část 1: Metoda dle Kjeldahla]. CSN EN ISO 8968-1:2014 (57 0528). Prague: Czech Office for Standards, Metrology and Testing.
  32. COSMT. 2014b. Milk - Determination of nitrogen content - Part 2: Block-digestion method (Macro method) [in Czech: Mléko - Stanovení obsahu dusíku - Část 2: Metoda s blokovou mineralizací (Makro metoda)]. CSN EN ISO 8968-2:2014 (57 0528). Prague: Czech Office for Standards, Metrology and Testing.
  33. CROFCHECK, C. L., PAYNE, F. A. and MENGÜÇ, M. P. 2002. Characterization of milk properties with a radiative transfer model. Appl. Optics, 41(10): 2028-2037. DOI: 10.1364/AO.41.002028 Go to original source...
  34. CURRAN, D. J. 1996. Controlled-current coulometry. In: KISSINGER, P.T. and HEINEMAN, W.R. (Eds.). Laboratory techniques in electroanalytical chemistry. 2nd Edition. Monticello: Dekker, pp. 739-768. Go to original source...
  35. DEVI, V. S., COLEMAN, D. R. and TRUNTZER, J. 2011. Thermal Unfolding Curves of High Concentration Bovine IgG Measured by FTIR Spectroscopy. Protein J., 30(6): 395-403. DOI: 10.1007/s10930-011-9344-y Go to original source...
  36. DURKIN, J. 2012. AfiLab™. The Tool for Ketosis. [Ppt Presentation]. Available at: http://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=29&ved=0CHUQFjAIOBQ&url=http%3A%2F%2Fwww.oabp.ca%2FMembers%2FContinuing%2520Education%2F2012%2FFall%2FDurkin%2520-%2520AfiLab_The%2520tool%2520for%2520ketosis.ppt&ei=aOApU724EYnOygP-44GACg&usg=AFQjCNGwmfxF31mSSZqKOp0_aCHuqOKnzA&bvm=bv.62922401,d.bGQ [Accessed: 2018, July 12].
  37. ERBERSDOBLER, H. F., ECKART, K. and ZUCKER, H. 1980. Milk urea levels as a measure of imbalances in energy and protein intake. In: Proceedings of IVth International Conference on Production Disease in Farm Animals. München, Germany.
  38. ERYILMAZ, M., ZENGIN, A. and BOYACI, I. H. 2017. Rapid quantification of total protein with surface-enhanced Raman spectroscopy using o-phthalaldehyde. J. Raman Spectr., 48(5): 653-658. DOI: 10.1002/jrs.5099 Go to original source...
  39. FINETE, V. DE L., GOUVĘA, M. M., MARQUES, F. F. et al. 2013. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods? Food Chem., 141(4): 3649-3655. DOI: 10.1016/j.foodchem.2013.06.046 Go to original source...
  40. FRAENKEL-CONRAT, H. and COOPER, M. 1944. The use of dyes for the determination of acid and basic groups in proteins. J. Biol. Chem., 154: 239-246. Go to original source...
  41. FRISVAD, J. R., CHRISTENSENI, N. J. and JENSEN, H. W. 2007. Computing the scattering properties of participating media using Lorenz-Mie theory. ACM Trans. Graph., 26(3): 60. DOI: 10.1145/1276377.1276452 Go to original source...
  42. GARGIS, A. S., KALMAN, L., BERRY, M. W. et al. 2012. Assuring the quality of next generation sequencing in clinical laboratory practice. Nat. Biotechnol., 30(11): 1033-1036. DOI: 10.1038/nbt.2403 Go to original source...
  43. GLANZMANN, B., GERMANN, U. and COSSU, C. 2017. Experiences in organising of proficiency tests since six years. Forensic Sci. Int. Genet. Suppl. Ser., 6: 332-334. DOI: 10.1016/j.fsigss.2017.09.121 Go to original source...
  44. GOULDEN, J. D. S. 1964. Analysis of milk by infra-red absorption. J. Dairy Res., 31(3): 273-284. DOI: 10.1017/S0022029900018203 Go to original source...
  45. GRAPPIN, R. 1987a. Definition and evaluation of the overall accuracy of indirect methods of milk analysis - application to calibration procedure and quality control in dairy laboratory. Bullet. of IDF, Doc. 208, IDF Provisional Standard 128, pp. 3-12.
  46. GRAPPIN, R. 1987b. Application of indirect instrumental methods to the measurement of fat and protein content of ewes and goats milk. Bullet. of IDF, Doc. 208, pp. 41-43.
  47. GRAPPIN, R. 1992. Bases and experiences of expressing the protein content of Milk - France. J. Dairy Sci., 75(11): 3221-3227. DOI: 10.3168/jds.S0022-0302(92)78088-6 Go to original source...
  48. GRAPPIN, R. 1993. European network of dairy laboratories. In: Proceedings of an International Analytical Quality Assurance and Good Laboratory Practice in Dairy Laboratories. Sonthofen, 18-20 May 1992. Brussels: International Dairy Federation, pp. 205-211.
  49. GRAPPIN, R. and LEFIER, D. 1993. Reference and routine methods for the measurement of nitrogen fractions in milk and whey. Cheese yielding - factors affecting its control. In: IDF Seminar proceedings, 5.1 Measurement of casein and other analytical methods. Cork, April. Brussels: International Dairy Federation, pp. 191-203.
  50. HANUŠ, O. and FICNAR, J. 1990. Kjeltec as a tool for calibration of infrared milk analyzers. In: Focus: Tec. J. Technol. Chem. Anal., 13(1): 15-17.
  51. HANUŠ, O., BENDA, P., JEDELSKÁ, R. et al. 1998. Design and evaluation of the first national qualitative testing of routine milk analyses. Acta Univ. Agric. et Silvic. Mendel. Brun., 46(3): 33-53.
  52. HANUŠ, O., FICNAR, J., JEDELSKÁ, R. et al. 1995. Methodical problems of nitrogen matters determination in cow's milk [in Czech: Metodické problémy stanovení dusíkatých látek v kravském mléce]. Vet. Med., 40(12): 387-396.
  53. HANUŠ, O., GENČUROVÁ, V., HERING, P. et al. 2006. Quality assurance of protein analyses in the Czech milk recording system. Focus Foss Mag., 30(1): 16-18.
  54. HANUŠ, O., GENČUROVÁ, V., YONG, T. et al. 2009. Reference and indirect instrumental determination of basic milk composition and somatic cell count in various species of mammals. Sci. Agric. Bohem., 40(4): 196-203.
  55. HANUŠ, O., ŘÍHA, J., SAMKOVÁ, E. et al. 2014. A comparison of result reliability for investigation of milk composition by alternative analytical methods in Czech Republic. Acta Univ. Agric. et Silvic. Mendel. Brun., 62(5): 929-937. DOI: 10.11118/actaun201462050929 Go to original source...
  56. HANUŠ, O., STÁDNÍK, L., TOMÁŠKA, M. et al. 2016. The evaluation of real time milk analyse result reliability in the Czech Republic. Acta Univ. Agric. et Silvic. Mendel. Brun., 64(4): 1155-1166. DOI: 10.11118/actaun201664041155 Go to original source...
  57. HANUŠ, O., VYLETĚLOVÁ, M., TOMÁŠKA, M. et al. 2011. The effects of sample fat value manipulation on raw cow milk composition and indicators. Acta Univ. Agric. et Silvic. Mendel. Brun., 59(1): 101-112. DOI: 10.11118/actaun201159010101 Go to original source...
  58. HAUG, A., HOSTMARK, A.T. and HARSTAD, O.M. 2007. Bovine milk in human nutrition - A review. Lipids. Health. Dis., 6: 25. DOI: 10.1186/1476-511X-6-25 Go to original source...
  59. HILL, A. R., MAKARCHUK, M. J. and SZIJARTO, L. F. Comparison of alternative calibration procedures for infra-red milk analyzers. Canad. Inst. Sci. Techn. J., 24(5): 228-232.
  60. HU, J. Z., ZHAO, S. and GENG, W. H. 2018. Accurate pKa Computation Using Matched Interface and Boundary (MIB) Method Based Poisson-Boltzmann Solver. Commun. Comput. Phys., 23(2): 520-539. Go to original source...
  61. ISHAY, E., LEMBERSKIY KUZIN, L., KATZ, G. et al. 2011. S.A.E. Afikim. Calibration, monitoring and control approach for multi-devices system performing analysis in rough environment. [Online]. Available at: http://www.icar.org/Documents/Bourg-en-Bresse2011/Presentations/session%204%20-%2023%20am/3%20Lembersky%20Kusini.pdf [Accessed: 2018, July 12].
  62. ISO. 2010. Conformity assessment - General requirements for proficiency testing. ISO 17043:2010. Geneva: International Standard Organization.
  63. JAKOB, E., SIEVERT, C., SOMMER, S. et al. 1995. Automated Determination of Total Nitrogen in Milk according to the Dummas Method [in German: Automatisierte Bestimmung des Gesamt Stickstoffs in Milch Nach der Dummas-Methode]. Z. Lebensm. Unters. Forsch., 200: 239-243. DOI: 10.1007/BF01187511 Go to original source...
  64. JANKOVSKÁ, R. and ŠUSTOVÁ, K. 2003. Analysis of cow milk by near-infrared spectroscopy. Czech J. Food Sci., 21(4): 123-128. DOI: 10.17221/3488-CJFS Go to original source...
  65. JENKINS, T. C. and MCGUIRE, M. A. 2006. Major advances in nutrition: impact on milk composition. J. Dairy Sci., 89(4): 1302-1310. DOI: 10.3168/jds.S0022-0302(06)72198-1 Go to original source...
  66. KAARLS, R., MACKAY, L., SAMUEL, A. et al. 2017. Laboratory capacity building through the use of metrologically traceable reference values in proficiency testing programmes. Accred. Qual. Assur., 22: 321-334. DOI: 10.1007/s00769-017-1298-0 Go to original source...
  67. KARMAN, A. H. and BOEKEL, VAN M. A.J. S. 1986. Evaluation of the Kjeldahl factor for conversion of the nitrogen content of milk and milk products to protein content. Neth. Milk Dairy J., 40: 315-336.
  68. KATZ, G. 2007. AfiLab™. Milk Analyzer. Real Time Measuring of Milk Components. [Online]. Available at: http://www.icar.org/Documents/Verona_Presentations/SAE_Afikim_Katz.pdf [Accessed: 2018, July 12].
  69. KATZ, G. and PINSKY, N. 2008. AfiLab™. A new approach to perform analysis of milk components incorporating statistical methods adapted in a real time sensor. [Online]. Available at: https://www.google.cz/?gfe_rd=cr&ei=iKnSVuG9IOOg8wfwiKroDA&gws_rd=ssl#q=AfiLab+A+new+approach+to+perform+analysis+Gil+Katz [Accessed: 2018, July 12].
  70. KESSLER, R. W. 2013. Perspectives in process analysis. J. Chemometr., 27(11): 369-378. DOI: 10.1002/cem.2549 Go to original source...
  71. KIRCHGESSNER, M., KREUZER, M. and ROTH-MAIER, D. A. 1986. Milk urea and protein content to diagnose energy and protein malnutrition of dairy cows. Arch. Anim. Nutr., 36(2-3): 192-197. Go to original source...
  72. KIRCHGESSNER, M., ROTH-MAIER, D. A. and RÖHRMOSER, G. 1985. Urea Content in Milk of Cows with Energy or Protein Deficiency and Subsequent Realimentation [in German: Harnstoffgehalt in Milch von Kühen mit Energie bzw. Proteinmangel und Anschliessender Realimentation]. Z. Tierphysiol. Tiernähr. Futterm., 53(1-5): 264-270. DOI: 10.1111/j.1439-0396.1985.tb00031.x
  73. KORHONEN, H.M., PIHLANTO-LEPPALA, A., RANTAMAKI, P. et al. 1998. Impact of processing on bioactive proteins and peptides. Trends. Food. Sci. Technol., 9 (8-9): 307-319. DOI: 10.1016/S0924-2244(98)00054-5 Go to original source...
  74. KUKAČKOVÁ, O., ČURDA, L. and JINDŘICH, J. 2000. Multivariate calibration of raw cow milk using NIR spectroscopy. Czech J. Food Sci., 18(1): 1-4.
  75. LACTOSTAR. 2005. Analyzer of milk components. In: LACTOSTAR. Operation manual 3510 [in Czech: Analýza mléčných složek. Operační manuál 3510]. Prague: Bentley Czech s.r.o., pp. 1-32.
  76. LEFIER, D., GRAPPIN, R. and POCHET, L. 1996. Determination of fat, protein and lactose in raw milk by Fourier transform infrared spectroscopy and by analysis with a conventional filter-based milk analyzer. Food Compos. Addit., 79(3): 711-717. Go to original source...
  77. LERAY, O. 2009a. ICAR AQA strategy - International anchorage and harmonization. In: Proceedings of the36th ICAR Biennial Session. Niagara Falls, 16-20 June. Rome: ICAR Technical Series, pp. 295-300.
  78. LERAY, O. 2009b. Interlaboratory reference system and centralized calibration - Prerequisites and standard procedures. In: Proceedings of the 36th ICAR Biennial Session. Niagara Falls, 16-20 June. Rome: ICAR Technical Series, pp. 301-305.
  79. LERAY, O. 2010. Analytical precision performance in ICAR proficiency testing programmes. In: Proceedings of the 37th ICAR Biennial Session. Riga, 31 May - 4 June. Rome: ICAR Technical Series, pp. 263-270.
  80. LIANG, M., CHEN, V. Y. T., CHEN, H.-L., et al. 2006. A simple and direct isolation of whey components from raw milk by gel filtration chromatography and structural characterization by Fourier transform Raman spectroscopy. Talanta, 69(5): 1269-1277. DOI: 10.1016/j.talanta.2006.01.008 Go to original source...
  81. LIMA, J. F. C. C., DELERUE-MATOS, C. and VAZ, M. C. 1999. Flow-injection analysis of Kjeldahl nitrogen in milk and dairy products by potentiometric detection. Anal. Chim. Acta, 385: 437-441. DOI: 10.1016/S0003-2670(98)00687-4 Go to original source...
  82. LINGANE, J. J. 1958. Electroanalytical Chemistry. 2nd Edition. London: John Wiley & Sons Inc.
  83. LÖNNERDAL, B. 2004. Human milk proteins: key components for the biological activity of human milk. Adv. Exp. Med. Biol., 554: 11-25. DOI: 10.1007/978-1-4757-4242-8_4 Go to original source...
  84. McGOVERIN, C. M., CLARK, A. S. S., HOLROYD, S. E. et al. 2010. Raman spectroscopic quantification of milk powder constituents. Anal. Chim. Acta, 673(1): 26-32. DOI: 10.1016/j.aca.2010.05.014 Go to original source...
  85. MILTON, M. J. T. and QUINN, T. J. 2001. Primary Methods for the Measurement of Amount of Substance. Metrologia, 38(4): 289-296. DOI: 10.1088/0026-1394/38/4/1 Go to original source...
  86. MOORE, J. C., DeVRIES, J. W., LIPP, M. et al. 2010. Total Protein Methods and Their Potential Utility to Reduce the Risk of Food Protein Adulteration. Compr. Rev. Food Sci. F., 9(4): 330-357. DOI: 10.1111/j.1541-4337.2010.00114.x Go to original source...
  87. MOROS, J., IŃÓN, F. A., KHANMOHAMMADI, M. et al. 2006. Evaluation of the application of attenuated total reflectance-Fourier transform infrared spectrometry (ATR FTIR) and chemometrics to the determination of nutritional parameters of yoghurt samples. Anal. Bioanal. Chem., 385(4): 708-715. DOI: 10.1007/s00216-006-0418-1 Go to original source...
  88. MUŃIZ, R., PÉREZ, M. A., DE LA TORRE, C. et al. 2009. Comparison of principal component regression (PCR) and partial least square (PLS) methods in prediction of raw milk composition by Vis-NIR spectrometry. Application to development of on-line sensors for fat, protein and lactose content. In: XIX IMEKO World Congress Fundamental and Applied Metrology. FIL Meeting Centre, 6-11 September. Lisbon: International Measurement Confederation, pp. 2564-2568.
  89. NCBI. 2006. Orange G - CID=9566064. [Online]. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/9566064#section=Top [Accessed: 2018, June 6].
  90. NCBI. 2008. Acid Orange 12 - CID=23668832. [Online]. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/23668832#section=Top [Accessed: 2018, June 6].
  91. NCBI. 2009. Amido Black 10B - CID=44134531. [Online]. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/44134531#section=Top [Accessed: 2018, June 6].
  92. NICOLAOU, N., XU, Y. and GOODACRE, R. 2010. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J. Dairy Sci., 93(12): 5651-5660. DOI: 10.3168/jds.2010-3619 Go to original source...
  93. OWUSU-APENTEN, R. K. 2002. The Udy method. In: OWUSU-APENTEN, R. K. (Ed.). Food protein analysis: quantitative effects on processing. 1st Edition. Boca Raton: CRC Press, pp. 125-68. Go to original source...
  94. PECOVÁ, L., HANUŠ, O., HASOŇOVÁ, L. et al. 2017. Evaluation of the result reliability of basic milk composition in an automated milking system through indirect real-time analysis. In: Proceedings of 24th International PhD Students Conference MendelNet 2017. Brno, 8-9 November. Brno: Mendel University in Brno, Faculty of AgriSciences, pp. 249-254.
  95. PEEPLES, M. L. and HEATH, G. L. 1979. Use of protein-formol titration relationships for estimating ratios of skim milk and whey solids in frozen dairy desserts. J. Food Sci., 44(2): 558-559. DOI: 10.1111/j.1365-2621.1979.tb03835.x Go to original source...
  96. PERLÍN, C. 2003. Ultrasonic milk analyzer. UZEI 15557 [in Czech: Ultrazvukový analyzátor mléka]. [Online]. Available at: http://www.agronavigator.cz/default.asp?ch=15&typ=1&val=15557&ids=199 [Accessed: 2018, July 19].
  97. PYNE, G. T. 1932. The determination of milk-proteins by formaldehyde titration. Biochem. J., 26(4): 1006-1014. DOI: 10.1042/bj0261006 Go to original source...
  98. QUINN, T. J. 1997. Primary methods of measurement and primary standards. Metrologia, 34(1): 61-65. DOI: 10.1088/0026-1394/34/1/9 Go to original source...
  99. RENNER, E. 1980. Total Nitrogen Substances or Pure Protein Content as a Quality Criterion of Milk [in German: Gesamtstickstoff-Substanzen oder Reineiweiß Gehalt als Qualitaetskriterium der Milch]. Deutsch. Molkerei-Zeitung (München), 25, 26: 958-964, 1003-1006.
  100. RENNER, E. 1982. Milk and Milk products in the Diet of Man [in German: Milch und Milchprodukte in der Ernährung des Menschen]. 4th Edition. München: VV-GmbH, Volkswirtschaftlicher Verl. - Gelsenkirchen-Buer: Mann.
  101. RENNER, E. and ÖMEROGLU, S. 1971. Detection of the True Protein Content in the Milk with Devices Based on the Amido Black Method [in German: Erfassung des wahren Eiweiß Gehaltes in der Milch mit Geraeten auf der Grundlage der Amidoschwarz-Methode]. Deutsch. Milchwirtschaft (Hildesheim), 22(28): 1270-1271.
  102. ROWLAND, S. J. 1938a. The Precipitation of the proteins in milk: I. Casein II. Total proteins III. Globulin IV. Albumin and proteose peptone. J. Dairy Res., 9(1): 30-41. DOI: 10.1017/S0022029900002284 Go to original source...
  103. ROWLAND, S. J. 1938b. The determination of the nitrogen distribution in milk. J. Dairy Res., 9(1): 42-46. DOI: 10.1017/S0022029900002296 Go to original source...
  104. SATO, T., IWAMOTO, M., HASHIZUME, K. et al. 1985. Near infrared spectrophotometric analysis for measuring major constituents of raw milk. Japan. J. Zootech. Sci., 56(11): 878-882. Go to original source...
  105. SATO, T., YOSHINO, M., FURUKAWA, S. et al. 1987. Analysis of milk constituents by the near infrared spectrophotometric method. Japan. J. Zootech. Sci., 58(8): 698-706. Go to original source...
  106. SHERBON, J. W. 1978. Recent developments in determining protein content of dairy products by dye binding. J. Dairy Sci., 61(9): 1274-1278. DOI: 10.3168/jds.S0022-0302(78)83717-5 Go to original source...
  107. SILVEIRA, T. M. L., FONSECA, L. M., CANÇADO, S. V. et al. 2004. Comparison between standard methods and electronic analyses for measurement of the bovine milk composition. Arq. Bras. Med. Vet. Zootec., 56(6): 782-787. DOI: 10.1590/S0102-09352004000600013 Go to original source...
  108. SJAUNJA, L.O. 1984. Studies on milk analysis of individual cow milk samples. II. Factors affecting milk analyses by infrared technique under laboratory conditions. Acta Agric. Scand., 34: 260-272. DOI: 10.1080/00015128409435395 Go to original source...
  109. ŠPRONGL, L. and PAULÍK, M. 2011. Quality systems in the laboratory. In: BARTŮŇKOVÁ, J., HRUŠÁK, O., PAULÍK, M. et al. (eds). Investigative methods in imunology [in Czech: Systémy jakosti (kvality) v laboratoři. Vyšetřovací metody v imunologii]. 2nd Edition. Prague: Grada Publishing, pp. 149-155.
  110. STEINEGGER, R. 1905. The "aldehyde" value of milk. Zeit Unters. Nah. Genuss., 10: 659-671. DOI: 10.1007/BF02010073 Go to original source...
  111. STOLE, S. M., POPENOE, D. D. and PORTER, M. D. 1991. Infrared spectroelectrochemistry: A probe of the molecular architecture of the electrochemical interface. In: ABRUŃA, H. D. (Ed.). Electrochemical Interfaces. Modern Techniques for In-Situ Interface Characterization. 1st Edition. New York: VCH Publishers, pp. 339-340.
  112. ŠUSTOVÁ, K., KUCHTÍK, J. and KRÁČMAR, S. 2006. Analysis of ewe's milk by FT near infrared spectroscopy: Measurement of samples on Petri dishes in reflectance mode. Acta Univ. Agric. et Silvic. Mendel. Brun., 53(2): 131-138. DOI: 10.11118/actaun200654020131 Go to original source...
  113. ŠUSTOVÁ, K., RŮŽIČKOVÁ, J. and KUCHTÍK, J. 2007. Application of FT near spectroscopy for determination of true protein and casein in milk. Czech J. Anim. Sci., 52(9): 284-291. DOI: 10.17221/2264-CJAS Go to original source...
  114. SZEBELLÉDY, L. and SOMOGYI, Z. 1938. Coulometric analysis as a precision method. I. Fresenius Z Anal. Chem., 112: 313-323. DOI: 10.1007/BF01383885 Go to original source...
  115. TAYLOR, J. K. and SMITH, S. W. 1959. Precise Coulometric Titration of Acids and Bases. J. Res. Natl. Bur. Stand. A Phys. Chem., 1959, 63(2): 153-159. DOI: 10.6028/jres.063A.008 Go to original source...
  116. TAYLOR, W. H. 1957. Formal titration: An evaluation of its various modifications. Analyst, 82(976): 488-498. DOI: 10.1039/an9578200488 Go to original source...
  117. TSENKOVA, R., ATANASSOVA, S., ITOH, K. et al. 2000. Near infrared spectroscopy for biomonitoring: Cow milk composition measurement in a spectral region from 1.100 to 2.400 nanometers. J. Anim. Sci., 78(3): 515-522. DOI: 10.2527/2000.783515x Go to original source...
  118. TSENKOVA, R., ATANASSOVA, S., TOYODA, K. et al. 1999. Near-infrared spectroscopy for dairy management: Measurement of unhomogenized milk composition. J. Dairy Sci., 82(11): 2344-2351. DOI: 10.3168/jds.S0022-0302(99)75484-6 Go to original source...
  119. URH, J. J. 2008. Protein testing enters the 21st century: Innovative protein analyzer not affected by melamine. Am. Lab., 40(18): 18-19.
  120. VAN DER MEER, F. 2018. Near-infrared laboratory spectroscopy of mineral chemistry: A review. Int. J. Appl. Earth. Obs. Geoinf., 65: 71-78. DOI: 10.1016/j.jag.2017.10.004 Go to original source...
  121. VELÍŠEK, J. and HAJŠLOVÁ, J. 2009. Milk and milk products. In: VELÍŠEK, J. and HAJŠLOVÁ, J. (eds). The Chemistry of Food 1 [in Czech: Mléko a mléčné výrobky. Chemie potravin 1]. 3rd Edition. Tabor: Ossis, pp. 53-58.
  122. VERREZEN, F., VASILE, M., LOOTS, H. et al. 2017. Method validation and verification in liquid scintillation counting using the long-term uncertainty method (LTUM) on two decades of proficiency test data. J. Radioanal. Nucl. Chem., 314(2): 737-742. DOI: 10.1007/s10967-017-5436-2 Go to original source...
  123. VOORT VAN DE, F. R., KERMASHA, S., SMITH, J. P. et al. 1987. A study of the stability of record of performance milk samples for infrared milk analysis. J. Dairy Sci., 70: 1515-1523. DOI: 10.3168/jds.S0022-0302(87)80178-9 Go to original source...
  124. WALSTRA, P., WOUTERS, J. T. M. and GEURTS, T. J. 2006. Dairy science and technology. Milk: Main Characteristics. 2nd Edition. Boca Raton: CRC Press. Go to original source...
  125. WOJCIECHOWSKI, K. L. and BARBANO, D. M. 2015. Modification of the Kjeldahl noncasein nitrogen method to include bovine milk concentrates and milks from other species. J. Dairy Sci., 98(11): 7510-7526. DOI: 10.3168/jds.2015-9580 Go to original source...
  126. ZHANG, L., BOEREN, S., SMITS, M. et al. 2016. Proteomic study on the stability of proteins in bovine, camel, and caprine milk sera after processing. Food Res. Int., 82: 104-111. DOI: 10.1016/j.foodres.2016.01.023 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.