Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66(5), 1217-1224 | DOI: 10.11118/actaun201866051217

Analysis of Surface Defects in Composites Using Digital Image Correlation and Acoustic Emission

Jaroslav Začal1, Petr Dostál1, Jakub Rozlivka1, Martin Brabec2
1 Department of Technology and Automobile Transport, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2 Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic

This work employs the acoustic emission (AE) method for material state monitoring. AE presents a non-destructive evaluation technique, which could be used for detection of microstructural changes in composite material. Work describes the process of acquisition of AE in tensile loading of carbon composite materials. In course of tensile stress, the composite was monitored with optical method, applying principles of digital image correction (DIC). Optical stereovision method enables calculation of field shift and field of proportional deformation at composite surface. The objective is analysis of damage in carbon composite materials and employ the methodology of AE signal processing for facilitation of early damage diagnostics and prediction of structural failure. For this purpose, the experimental setup was designed to obtain results from 50 nominally identical composite samples in tensile loading test. Force load applied on samples was synchronically recorded along with AE and image data. Experimental data were subsequently analysed in a way enabling the description of typical phenomena in course of every measurement. Results show that observation of AE sources could be employed in facilitation of early damage diagnostics and establishment of failure prognosis. It is about internal changes in composite material.

Keywords: acoustic emission, carbon fibre, non-destructive testing
Grants and funding:

The research has been supported by the project TP 6/2017: Defectoscopic quality assessment of technical and organic materials; financed by IGA AF MENDELU.

Published: October 29, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Začal, J., Dostál, P., Rozlivka, J., & Brabec, M. (2018). Analysis of Surface Defects in Composites Using Digital Image Correlation and Acoustic Emission. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis66(5), 1217-1224. doi: 10.11118/actaun201866051217
Download citation

References

  1. ABRY, J., CHOI, Y. CHATEAUMINOIS, A., DALLOZ, B., GIRAUD, G. and SALVIA, M. 2001. In-situ monitoring of damage in cfrp laminates by means of ac and dc measurements. Composites Science and Technology, 61(6): 855-864. DOI: 10.1016/S0266-3538(00)00181-0 Go to original source...
  2. ANGELIDIS, N., WEI, C. and IRVING, P. 2004. The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain. Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing), 35(10): 1135-1147. DOI: 10.1016/j.compositesa.2004.03.020 Go to original source...
  3. BAKER, C., MORSCHER, G. M., PUJAR, V. V. and LEMANSKI, J. R. 2015. Transverse crac-king in carbon fiber reinforced polymer composites: Modal acoustic emission and peak frequency analysis. Composites Science and Technology, 116: 26-32. DOI: 10.1016/j.compscitech.2015.05.005 Go to original source...
  4. DAKEL. 2011. Uživatelská dokumentace k programu Daemon. Praha: Zemědělské družstvo Rpety se sídlem ve Rpetech, Středisko technické diagnostiky DAKEL.
  5. DE GROOT, P. J., WIJNEN, P. A. M. and JANSSEN, B. F. R., 2000. Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon / epoxy composites. Composites Science and Technology, 55(4): 405-412. DOI: 10.1016/0266-3538(95)00121-2 Go to original source...
  6. DEPARTMENT OF DEFENSE. 2002. Composite Materials Handbook - Volume 1. Polymer Matrix Composites, Guidelines for Characterization of Structural Materials. [Online]. Fort Washington: Department of Defense. Available at: http://www.dtic.mil / dtic / tr / fulltext / u2 / a426516.pdf [Accessed: 2018, July 15].
  7. EHRENSTEIN, G. W. 2009. Polymerní kompozitní materiály. 1st Edition. Praha: Nakl. Scientia.
  8. GREENHALGH, E. S. and HILEY, M. J. 2008. Fractography of polymer composites: current status and future issues. In: Proceedings of the 13th European conference on composite materials (ECCM13). Stockholm: KTH Royal Institute of Technology.
  9. GUTKIN, R., GREEN, C. J., VANGRATTANACHAI, S., PINHO, S. T., ROBINSON, P. and CURTIS, P. T. 2011. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mechanical Systems and Signal Processing, 25(4): 1393-1407. DOI: 10.1016/j.ymssp.2010.11.014 Go to original source...
  10. LU, C., DING, P. and CHEN, Z. 2011. Time-frequency analysis of acoustic emission signals generated by tension damage in CFRP. Procedia Engineering, 23: 210-215. DOI: 10.1016/j.proeng.2011.11.2491 Go to original source...
  11. ONO, K. 2005. Current understanding of mechanisms of acoustic emission. The Journal of Strain Analysis for Engineering Design, 40(1): 1-15. DOI: 10.1243/030932405X7674 Go to original source...
  12. PLOTNIKOV, Y. A. and WINFREE, W. P. 1999. Visualization of subsurface defects in composites using a focal plane array infrared camera. In: Proceedings of SPIE - The International Society for Optical Engineering. Vol. 3700, pp. 26-31. Go to original source...
  13. PROSSER, W. H. 1998. Waveform analysis of ae in composites. In: Proceedings of the Sixth International Symposium on Acoustics Emission from Composite Materials. Vol. 3700, pp. 61-70.
  14. SCHINNER, G., BRANDT, J. and RICHTER, H. 1996. Recycling Carbon-Fiber-Reinforced Thermoplastic Composites. Journal of Thermoplastic Composite Materials, 9(3): 239-245. DOI: 10.1177/089270579600900302 Go to original source...
  15. TŮMA, J. et al. 1997. Zpracovani signalů ziskanych z mechanických systemů užitim FFT. Praha: Sdělovací technika.
  16. ÚNMZ. 1998. Plasty - Stanovení tahových vlastností - Část 4: Zkušební podmínky pro izotropní a orthotropní plastové kompozity vyztužené vlákny. ČSN EN ISO 527-4. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví.
  17. ZAČAL, J., DOSTÁL, P., ŠUSTR M. and DOBROCKÝ, D. 2016. Monitoring of Changes Signal Acoustic Emission Signals Using Waveguides. Acta Universitatis Agriculturaeet Silviculturae Mendelianae Brunensis, 65(4): 1317-1322. DOI: 10.11118/actaun201765041317 Go to original source...
  18. ZAČAL, J., DOSTÁL, P., ŠUSTR, M. and DOBROCKÝ, D. 2017. Acoustic Emission During Tensile Testing of Composite Materials. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(4): 1309-1315. DOI: 10.11118/actaun201765041309 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.