Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66(4), 1055-1064 | DOI: 10.11118/actaun201866041055

An Overview of Determination of Milk Fat: Development, Quality Control Measures, and Application

Robert Kala1, Eva Samková1, Lenka Pecová1, Oto Hanuš2, Kęstutis Sekmokas3, Dalia Riaukienė3
1 Department of Food Biotechnologies and Agricultural Products Quality, Faculty of Agriculture, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
2 Dairy Research Institute, Ltd., Ke Dvoru 791/12a, 160 00 Prague, Czech Republic
3 SE "Pieno Tyrimai", Radvilu Dvaro str. 31, LT-48331 Kaunas, Lithuania

Milk fat content is an important indicator of milk quality because of nutritional and technological aspects of dairying. In this sense the milk fat determination is important practice procedure. The work goal was to do an effective overview and comparison of reference and routine methods of fat determination during their development. Nowadays, there exist a number of methods for determining milk fat content. Reference methods require accurate analysis in compliance with the International Standard ISO, whereas routine methods perform analysis using routine instrumental techniques for faster and cheaper results with acceptable accuracy. Quality control measures have a significant role for result determination reliability and they include internal quality controls, external quality controls, precision of evaluation, and blank samples. In conclusion, due to continuous development and improvement, routine methods will be used more often.

Keywords: milk fat, raw cow 's milk, reference methods, routine methods
Grants and funding:

Supported by the Ministry of Agriculture of the Czech Republic, project No. QJ1510336 and the Grant Agency of University of South Bohemia, project No. 002/2016/Z.

Published: August 31, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kala, R., Samková, E., Pecová, L., Hanuš, O., Sekmokas, K., & Riaukienė, D. (2018). An Overview of Determination of Milk Fat: Development, Quality Control Measures, and Application. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis66(4), 1055-1064. doi: 10.11118/actaun201866041055
Download citation

References

  1. AERNOUTS, B., POLSHIN, E., LAMMERTYN, J. et al. 2011. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: reflectance or transmittance? J. Dairy Sci., 94(11): 5315-5329. DOI: 10.3168/jds.2011-4354 Go to original source...
  2. ASHWORTH, U.S. 1969. Turbidimetric Methods for Measuring Fat Content of Homogenized Milk. J. Dairy Sci., 52(2): 262-263. DOI: 10.3168/jds.S0022-0302(69)86542-2 Go to original source...
  3. ASTAIRE, J. C., WARD, R., GERMAN, J. B. et al. 2003. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci., 86(7): 2297-2307. DOI: 10.3168/jds.S0022-0302(03)73822-3 Go to original source...
  4. BELLOQUE, J. and RAMOS, M. 1999. Application of NMR spectroscopy to milk and dairy products. Trends Food Sci. Technol., 10(10): 313-320. DOI: 10.1016/S0924-2244(00)00012-1 Go to original source...
  5. BLIGH, E. G. and DYER, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37(8): 911-917. DOI: 10.1139/y59-099 Go to original source...
  6. BOGOMOLOV, A. and MELENTEVA, A. 2013. Scatter-based quantitative spectroscopic analysis of milk fat and total protein in the region 400-1100 nm in the presence of fat globule size variability. Chem. Intelligent Lab. Syst., 126: 129-139. DOI: 10.1016/j.chemolab.2013.02.006 Go to original source...
  7. BOGOMOLOV, A., BELIKOVA, V., GALYANIN, V. et al. 2017. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000 nm using spatially resolved diffuse reflectance fiber probe. Talanta, 167: 563-572. DOI: 10.1016/j.talanta.2017.02.047 Go to original source...
  8. BOGOMOLOV, A., MELENTEVA, A. and DAHM, D. J. 2013. Fat Globule Size Effect on Visible and Shortwave near Infrared Spectra of Milk. J. Near Infrared Spectr., 21(5): 435-440. DOI: 10.1255/jnirs.1076 Go to original source...
  9. BUDGE, S. M., IVERSON, S. J. and KOOPMAN, H. N. 2006. Studying the trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mamm. Sci., 22(4): 759-801. DOI: 10.1111/j.1748-7692.2006.00079.x Go to original source...
  10. CABASSI, G., PROFAIZER, M., MARINONI, L. et al. 2013. Estimation of fat globule size distribution in milk using an inverse light scattering model in the near infrared region. J. Near Infrared Spectr., 21(5): 359-373. DOI: 10.1255/jnirs.1070 Go to original source...
  11. CAES. 1894. The Babcock method of determining the proportion of fat in milk and milk products. In: Bulletin No. 117: The Babcock method of determining fat in milk and milk products. Connecticut Agricultural Experiment Station, January. New Haven, 3-11.
  12. CASTELL-PALOU, A., ROSSELLÓ, C., FEMENIA, A. et al. 2013. Simultaneous Quantification of Fat and Water Content in Cheese by TD-NMR. Food Bioprocess Technol., 6(10): 2685-2694. DOI: 10.1007/s11947-012-0912-8 Go to original source...
  13. CHOI, A., FUSCH, G., ROCHOW, N. et al. 2015. Establishment of micromethods for macronutrient contents analysis in breast milk. Matern. Child Nutr., 11(4): 761-772. DOI: 10.1111/mcn.12053 Go to original source...
  14. CROFCHECK, C. L., PAYNE, F. A., HICKS, C. L. et al. 2000. Fiber Optic Sensor Response to Low Levels of Fat in Skim Milk. J. Food Process. Eng., 23: 163-175. DOI: 10.1111/j.1745-4530.2000.tb00509.x Go to original source...
  15. CNI. 1973. Methods for testing of milk and milk products [in Czech: Metody zkoušení mléka a tekutých mléčných výrobků]. CSN 57 0530:1973. Prague: Czech Normalization Institute.
  16. CNI. 1993. Raw cow's milk for dairy treatment and processing [in Czech: Syrové kravské mléko pro mlékárenské ošetření a zpracování]. CSN 57 0529:1993. Prague: Czech Normalization Institute.
  17. CNI. 1999. Determination of milk composition by mid-infrared analyzer [in Czech: Stanovení složení mléka infračerveným absorpčním analyzátorem]. CSN 57 0536:1999. Prague: Czech Normalization Institute.
  18. CNI. 2005. Conformity assessment - General requirements for the competence of testing and calibration laboratories [in Czech: Posuzování shody - Všeobecné požadavky na způsobilost zkušebních a kalibračních laboratoří]. CSN EN ISO/IEC 17025:2005. Prague: Czech Normalization Institute.
  19. COSMT. 2001. Milk - Determination of fat content (Routine method) [in Czech: Mléko - Stanovení obsahu tuku (Rutinní metoda)]. CSN ISO 2446:2001. Prague: Czech Office for Standards, Metrology and Testing.
  20. COSMT. 2009. Milk and milk products - Guidance on sampling [in Czech: Mléko a mléčné výrobky - Směrnice pro odběr vzorků]. CSN ISO 707 (57 0003). Prague: Czech Office for Standards, Metrology and Testing.
  21. COSMT. 2011. Milk - Determination of fat content - Gravimetric method (Reference method) [in Czech: Mléko - Stanovení obsahu tuku - Vážková metoda (Referenční metoda)]. CSN EN ISO 1211:2011 (57 0534). Prague: Czech Office for Standards, Metrology and Testing.
  22. EL-ABASSY, R. M., ERAVUCHIRA, P. J., DONFACK, P. et al. 2011. Fast determination of milk fat content using Raman spectroscopy. Vib. Spectrosc., 56(1): 3-8. DOI: 10.1016/j.vibspec.2010.07.001 Go to original source...
  23. ELLER, F. and KING, J. 1996. Determination of fat content in foods by analytical SFE. Seminars Food Anal., 1: 145-162.
  24. FENG, X.-D., SU, R., XU, N. et al. 2013. Portable analyzer for rapid analysis of total protein, fat and lactose contents in raw milk measured by non-dispersive shortwave near-infrared spectrometry. Chem. Res. Chinese Univ., 2013, 29(1): 15-19. DOI: 10.1007/s40242-013-2191-y Go to original source...
  25. FOLCH, J., LEES, M. and SLOANE STANLEY, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226(1): 497-509. Go to original source...
  26. GARBER, E. A. E. and THOLE, J. 2015. Application of Microwave Irradiation and Heat to Improve Gliadin Detection and Ricin ELISA Throughput with Food Samples. Toxins, 7(6): 2135-2144. DOI: 10.3390/toxins7062135 Go to original source...
  27. GARCÍA-AYUSO, L. E., and DE CASTRO, M. D. L. 1999. A multivariate study of the performance of a microwave-assisted Soxhlet extractor for olive seeds. Anal. Chim. Acta, 382(3): 309-316. DOI: 10.1016/S0003-2670(98)00795-8 Go to original source...
  28. GARCÍA-AYUSO, L. E., VELASCO, J., DOBARGANES, M. C. et al. 1999. Double use of focused microwave irradiation for accelerated matrix hydrolysis and lipid extraction in milk samples. Int. Dairy J., 9(10): 667-674. DOI: 10.1016/S0958-6946(99)00139-9 Go to original source...
  29. GARGIS, A. S., KALMAN, L., BERRY, M. W. et al. 2012. Assuring the quality of next generation sequencing in clinical laboratory practice. Nat. Biotech., 30(11): 1033-1036. DOI: 10.1038/nbt.2403 Go to original source...
  30. GERBER, N. 1891. Neuer Butyrometer. CH Patent 2621. Swiss Federal Institute of Intellectual Property.
  31. GLANZMANN, B., GERMANN, U. and COSSU, C. 2017. Experiences in organising of proficiency tests since six years. For. Sci. Int. Gen. Suppl. Series, 6: 332-334. Go to original source...
  32. GRAPPIN, R. 1987. Definition and evaluation of the overall accuracy of indirect methods of milk analysis - application to calibration procedure and quality control in dairy laboratory. Bullet. of IDF, Doc. 208, IDF Provisional Standard 128, 3-122.
  33. GRAPPIN, R. 1993. European network of dairy laboratories. In: Proceedings of an International Analytical Quality Assurance and Good Laboratory Practice in Dairy Laboratories. Sonthofen, 18 - 20 May 1992. Brussels: International Dairy Federation, pp.205-211.
  34. HANUŠ, O., BENDA, P., JEDELSKÁ, R. et al. 1998. Design and evaluation of the first national qualitative testing of routine milk analyses. Acta Univ. Agric. Silvic. Mendelianae Brun., 46(3): 33-53.
  35. HANUŠ, O., GENČUROVÁ, V., YONG, T. et al. 2009. Reference and indirect instrumental determination of basic milk composition and somatic cell count in various species of mammals. Sci. Agricult. Bohem., 40(4): 196-203.
  36. HANUŠ, O., ŘÍHA, J., SAMKOVÁ, E. et al. 2014. A comparison of result reliability for investigation of milk composition by alternative analytical methods in Czech Republic. Acta Univ. Agric. Silvic. Mendelianae Brun., 62(5): 929-937 DOI: 10.11118/actaun201462050929 Go to original source...
  37. HANUŠ, O., VEGRICHT, J., FRELICH, J. et al. 2008. Analyse of raw cow milk quality according to free fatty acids contents in the Czech Republic. Czech J. Anim. Sci., 53(1): 17-30. DOI: 10.17221/2717-CJAS Go to original source...
  38. INON, F. A., GARRIGUES, S. and GUARDIA, M. 2004. Nutritional parameters of commercially available milk samples by FTIR and chemometric techniques. Anal. Chim. Acta, 513(2): 401-412. DOI: 10.1016/j.aca.2004.03.014 Go to original source...
  39. ISO. 1976. Milk-determination of fat content (Butyrometric routine method). ISO 2446:1976. Geneva: International Standards Office.
  40. ISO. 2005. Milk products and milk-based foods-determination of fat content by the Weibull-Berntrop gravimetric method (Reference method) - Part 1: Infant foods. ISO 8262-1:2005. Geneva: International Standards Office.
  41. ISO. 2005. Milk products and milk-based foods-determination of fat content by the Weibull-Berntrop gravimetric method (Reference method) - Part 2: Edible ices and ice-mixes. ISO 8262-2:2005. Geneva: International Standards Office.
  42. ISO. 2005. Milk products and milk-based foods-determination of fat content by the Weibull-Berntrop gravimetric method (Reference method) - Part 3: Special cases. ISO 8262-3:2005. Geneva: International Standards Office.
  43. ISO. 2010. Conformity assessment - general requirements for proficiency testing. ISO 17043:2010. Geneva: International Standards Office.
  44. IVERSON, S. J., LANG, S. L. C. and COOPER, M. H. 2001. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11): 1283-1287. DOI: 10.1007/s11745-001-0843-0 Go to original source...
  45. JANKOVSKÁ, R. and ŠUSTOVÁ, K. 2003. Analysis of cow milk by near-infrared spectroscopy. Czech J. Food Sci., 21(4): 123-128. DOI: 10.17221/3488-CJFS Go to original source...
  46. JENSEN, R. G. and NEWBURG, D. S. 1995. Bovine milk lipids. In: JENSEN, R. G. (Ed.). Handbook of Milk Composition. 1st edition. London: Academic Press, pp. 543-575. Go to original source...
  47. KAARLS, R., MACKAY, L., SAMUEL, A. et al. 2017. Laboratory capacity building through the use of metrologically traceable reference values in proficiency testing programmes. Accred. Qual. Assur., 22(6): 321-334. DOI: 10.1007/s00769-017-1298-0 Go to original source...
  48. KALININ, A., KRIVTSUN, V., KRASHENINNIKOV, V. et al. 2008. Calibration models for multi-component quantitative analyses of dairy with the use of two different types of portable near infrared spectrometer. J. Near Infrared Spectr., 16(3): 343-348. DOI: 10.1255/jnirs.797 Go to original source...
  49. KESSLER, R. W. 2013. Perspectives in process analysis. J. Chemometrics, 27(11): 369-378. DOI: 10.1002/cem.2549 Go to original source...
  50. KLEYN, D. H., TROUT, J. R. and WEBER, M. 1988. Determination of fat in raw milk: comparison of mojonnier (ether extraction) and Gerber method. J. Assoc. Off. Anal. Chem., 1988, 71(4): 851-853. Go to original source...
  51. KUCHERYAVSKIY, S., MELENTEVA, A. and BOGOMOLOV, A. 2014. Determination of fat and total protein content in milk using conventional digital imaging. Talanta, 121: 144-152. DOI: 10.1016/j.talanta.2013.12.055 Go to original source...
  52. KUKAČKOVÁ, O., ČURDA, L. and JINDŘICH, J. 2000. Multivariate calibration of raw cow milk using NIR spectroscopy. Czech J. Food Sci., 18(1): 1-4.
  53. LERAY, O. 2009a. ICAR AQA strategy - International anchorage and harmonization. In: Proceedings of the 36th ICAR Biennial Session. Niagara Falls, 16-20 June. Rome: ICAR Technical Series, pp.295-300.
  54. LERAY, O. 2009b. Interlaboratory reference system and centralized calibration - Prerequisites and standard procedures. In: Proceedings of the 36th ICAR Biennial Session. Niagara Falls, 16-20 June. Rome: ICAR Technical Series, pp.301-305.
  55. LERAY, O. 2010. Analytical precision performance in ICAR proficiency testing programmes. In: Proceedings of the 37th ICAR Biennial Session. Riga, 31 May - 4 June. Rome: ICAR Technical Series, pp.263-270
  56. LIU, Z. Q., ROCHFORT, S. and COCKS, B. G. 2016. Optimization of a single phase method for lipid extraction from milk. J. Chromatogr. A, 1458: 145-149. DOI: 10.1016/j.chroma.2016.06.055 Go to original source...
  57. LOCK, A. L. and BAUMAN, D. E. 2011. Milk fat and human health - separating fats from fiction. In: Proceedings 2011 Cornell Nutrition Conference for Feed Manufacturers. Cornell University, 18-20 October. New York: Department of Animal Science, Cornell University, pp. 126-135.
  58. MACHOVIČ, V. and NOVÁK, F. 1998. Diffuse reflectance infrared spectroscopy of soil bitumens from Sumava region [in Czech: Difuzně-reflexní infračervená spektroskopie půdních bitumenů z oblasti Šumavy]. Chem. Listy, 92(2): 151-156.
  59. MANGANIELLO, L., RÍOS, A. and VALCÁRCEL, M. 2000. Automatic microgravimetric determination of fats in milk products by use of supercritical fluid extraction with on-line piezoelectric detection. J. Chromatography A, 874(2): 265-274. DOI: 10.1016/S0021-9673(00)00093-5 Go to original source...
  60. MARMER, W. N. and MAXWELL, R. J. 1981. Dry Column Method for the Quantitative Extraction and Simultaneous Class Separation of Lipids from Muscle Tissue. Lipids, 16(5): 365-371. DOI: 10.1007/BF02534964 Go to original source...
  61. MAXWELL, R. J., MONDIMORE, D. and TOBIAS, J. 1986. Rapid method for the quantitative extraction and simultaneous class separation of milk lipids. J. Dairy Sci., 69(2): 321-325. DOI: 10.3168/jds.S0022-0302(86)80408-8 Go to original source...
  62. MEURENS, M., BAETEN, V., YAN, S. H. et al. 2005. Determination of the conjugated linoleic acids in cow's milk fat by Fourier transform Raman spectroscopy. J. Agri. Food Chem., 53(15): 5831-5835. DOI: 10.1021/jf0480795 Go to original source...
  63. MILTON, M. J. T. and QUINN, T. J. 2001. Primary Methods for the Measurement of Amount of Substance. Metrologia, 38(4): 289-296. DOI: 10.1088/0026-1394/38/4/1 Go to original source...
  64. MLČEK, J., DVOŘÁK, L., ŠUSTOVÁ, K. et al. 2016. Accuracy of the FT-NIR Method in Evaluating the Fat Content of Milk Using Calibration Models Developed for the Reference Methods According to Röse-Gottlieb and Gerber. J. AOAC Int., 99(5): 1305-1309. DOI: 10.5740/jaoacint.16-0107 Go to original source...
  65. NASCIMENTO, P. A. M., BARSANELLI, P. L., REBELLATO, A. P. et al. 2017. Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Chemometrics for Determination of Fat Content in Commercial Products of Milk Powder. J. AOAC Int., 100(2): 330-334. DOI: 10.5740/jaoacint.16-0408 Go to original source...
  66. NICOLAOU, N., XU, Y. and GOODACRE, R. 2010. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J. Dairy Sci., 93(12): 5651-5660. DOI: 10.3168/jds.2010-3619 Go to original source...
  67. OFTEDAL, O. T., EISERT, R. and BARRELL, G. K. 2014. Comparison of analytical and predictive methods for water, protein, fat, sugar, and gross energy in marine mammal milk. J. Dairy Sci., 97(8): 4713-4732. DOI: 10.3168/jds.2014-7895 Go to original source...
  68. PAPPAS, C. S., TARANTILIS, P. A., MOSCHOPOULOU, E. et al. 2008. Identification and differentiation of goat and sheep milk based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) using cluster analysis. Food Chem., 106(3): 1271-1277. DOI: 10.1016/j.foodchem.2007.07.034 Go to original source...
  69. PEREIRA, F. M. V., REBELLATO, A. P., PALLONE, J. A. L. et al. 2015. Through-package fat determination in commercial Samples of mayonnaise and salad dressing using time-domain nuclear magnetic resonance spectroscopy and chemometrics. Food Control, 48: 62-66. DOI: 10.1016/j.foodcont.2014.02.028 Go to original source...
  70. PERLÍN, C. 2003. Ultrasonic milk analyzer. UZEI 15557 [in Czech: Ultrazvukový analyzátor mléka]. [Online]. Available at: http://www.agronavigator.cz/default.asp?ch=15&typ=1&val=15557&ids=199. [Accessed: 2018, July 19].
  71. QUINN, T. J. 1997. Primary methods of measurement and primary standards. Metrologia, 34(1): 61-65. DOI: 10.1088/0026-1394/34/1/9 Go to original source...
  72. RINNAN, Å., VAN DER BERG, F. W. J. and ENGELSEN, S. B. 2009. Review of the most common pre-processing techniques for near-infrared spectra. TRAC Trends Anal. Chem., 28(10): 1201-1222. DOI: 10.1016/j.trac.2009.07.007 Go to original source...
  73. SAHENA, F., ZAIDUL, I. S. M., JINAP, S. et al. 2009. Application of supercritical CO2 in lipid extraction - A review. J. Food Eng., 95(2): 240-253. DOI: 10.1016/j.jfoodeng.2009.06.026 Go to original source...
  74. SAMKOVÁ, E., ŠPIČKA, J., PEŠEK, M., et al. 2012. Animal factors affecting fatty acid composition of cow milk fat: A review. South Afr. J. Anim. Sci., 42(2): 83-100.
  75. ŠPRONGL, L. and PAULÍK, M. 2011. Quality systems in the laboratory. In: BARTŮŇKOVÁ, J., HRUŠÁK, O., PAULÍK, M. et al. (eds). Investigative methods in imunology [in Czech: Systémy jakosti (kvality) v laboratoři. Vyšetřovací metody v imunologii]. 2nd edition. Prague: Grada Publishing, pp.149-155.
  76. TANKIEWICZ, M. and BIZIUK, M. 2018. Fast, sensitive and reliable multi-residue method for routine determination of 34 pesticides from various chemical groups in water samples by using dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry. Anal. Bioanal. Chem., 410(5): 1533-1550. DOI: 10.1007/s00216-017-0798-4 Go to original source...
  77. TSENKOVA, R., ATANASSOVA, S., TOYODA, K. et al. 1999. Near-infrared spectroscopy for dairy management: Measurement of unhomogenized milk composition. J. Dairy Sci., 82(11): 2344-2351. DOI: 10.3168/jds.S0022-0302(99)75484-6 Go to original source...
  78. UPADHYAY, N., JAISWAL, P. and JHA, S. N. 2018. Application of attenuated total reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) in MIR range coupled with chemometrics for detection of pig body fat in pure ghee (heat clarified milk fat). J. Mol. Struc., 1153: 275-281. DOI: 10.1016/j.molstruc.2017.09.116 Go to original source...
  79. VAN DE VOORT, F. R., SEDMAN, J., EMO, G. et al. 1992. A Rapid FTIR quality control method for fat and moisture determination in butter. Food Res. Int., 25(3): 193-198. DOI: 10.1016/0963-9969(92)90137-T Go to original source...
  80. VAN DER MEER, F. 2018. Near-infrared laboratory spectroscopy of mineral chemistry: A review. Int. J. Appl. Earth Obs. Geoinf., 65: 71-78. DOI: 10.1016/j.jag.2017.10.004 Go to original source...
  81. VERREZEN, F., VASILE, M., LOOTS, H. et al. 2017. Method validation and verification in liquid scintillation counting using the long-term uncertainty method (LTUM) on two decades of proficiency test data. J. Radioanal. Nucl. Chem., 314(2): 737-742. DOI: 10.1007/s10967-017-5436-2 Go to original source...
  82. VIEITEZ, I., IRIGARAY, B., CALLEJAS, N. et al. 2016. Composition of fatty acids and triglycerides in goat cheeses and study of the triglyceride composition of goat milk and cow milk blends. J. Food Comp. Anal., 48: 95-101. DOI: 10.1016/j.jfca.2016.02.010 Go to original source...
  83. WHEATLEY, K. E., BRADSHAW, C. J. A., HARCOURT, R. G. et al. 2008. Feast or famine: Evidence for mixed capital-income breeding strategies in Weddell seals. Oecologia, 155(1): 11-20. DOI: 10.1007/s00442-007-0888-7 Go to original source...
  84. WOLF, W. R., LACROIX, D. E., GOEL, R. et al. 2003. Total fat analysis in milk- and soy-based infant formula powder by supercritical fluid extraction. J. Am. Oil Chem. Soc., 80(9): 853-857. DOI: 10.1007/s11746-003-0785-y Go to original source...
  85. WOLFF, R. L., COMBE, N. A., PRECHT, D. et al. 1998. Accurate determination of trans-18:1 isomers by capillary gas-liquid-chromatography on cyanoalkyl polysiloxane stationary phases. Oil. Fats Crops Lipids, 5(4): 295-300.
  86. ZHU, X., GUO, W. and LIANG, Z. 2015. Determination of the Fat Content in Cow's Milk Based on Dielectric Properties. Food Bioproc. Technol., 8(7): 1485-1494. DOI: 10.1007/s11947-015-1508-x Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.