Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65(5), 1687-1694 | DOI: 10.11118/actaun201765051687

Using HMM Approach for Assessing Quality of Value at Risk Estimation: Evidence from PSE Listed Company

Tomáš Konderla, Václav Klepáč
Department of Statistics and Operation analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

The article points out the possibilities of using Hidden Markov model (abbrev. HMM) for estimation of Value at Risk metrics (abbrev. VaR) in sample. For the illustration we use data of the company listed on Prague Stock Exchange in range from January 2011 to June 2016. HMM approach allows us to classify time series into different states based on their development characteristic. Due to a deeper shortage of existing domestic results or comparison studies with advanced volatility governed VaR forecasts we tested HMM with univariate ARMA-GARCH model based VaR estimates. The common testing via Kupiec and Christoffersen procedures offer generalization that HMM model performs better that volatility based VaR estimation technique in terms of accuracy, even with the simpler HMM with normal-mixture distribution against previously used GARCH with many types of non-normal innovations.

Keywords: Hidden Markov model, Christoffersen duration test, Kupiec test, Value at Risk, ARMA-GARCH-GJR

Published: October 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Konderla, T., & Klepáč, V. (2017). Using HMM Approach for Assessing Quality of Value at Risk Estimation: Evidence from PSE Listed Company. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis65(5), 1687-1694. doi: 10.11118/actaun201765051687
Download citation

References

  1. ANGELIDIS, T., BENOS, A. and DEGIANNAKIS, A. S. 2004. The Use of GARCH Models in VaR Estimation. Statistical Methodology, 1(2): 105-128. DOI: 10.1016/j.stamet.2004.08.004 Go to original source...
  2. BAUM, L. E. and PETRIE, T. 1966. Statistical inference for probabilistic functions of finite-state Markov chains. Annals of Mathematical Statistics, 37(6): 1554-1563. DOI: 10.1214/aoms/1177699147 Go to original source...
  3. BOLLERSLEV, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3): 307-327. DOI: 10.1016/0304-4076(86)90063-1 Go to original source...
  4. CHRISTOFFERSEN, P. 1998. Evaluating interval forecast. International Economic Review, 39(4): 841-862. DOI: 10.2307/2527341 Go to original source...
  5. DANÍELSSON, J. 2002. The emperor has no clothes: Limits to risk modelling. Journalf of Banking and Finance, 26(7): 1273-1296. DOI: 10.1016/S0378-4266(02)00263-7 Go to original source...
  6. ENGLE, R. F. 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4): 987-1007. DOI: 10.2307/1912773 Go to original source...
  7. GLOSTEN, L., JAGANNATHAN, R. and RUNKLE, D. 1993. Relationship between the expected value and volatility of the nominal excess returns on stocks. Journal of Finance, 48(5): 1779-1802. DOI: 10.1111/j.1540-6261.1993.tb05128.x Go to original source...
  8. JÁNSKÝ, I. and RIPPEL M. 2011. Value at Risk forecasting with the ARMA-GARCH family of models in times of increased volatility. IES Working Paper 27 / 2011. Prague: Charles University.
  9. KHALED, S., DEACONU M., LEJAY A., CHAMPAGNAT N. and NAVET, N. 2016. Regime switching model for financial data: empirical risk analysis. Physica, 461: 148-157. Go to original source...
  10. KLEPÁČ, V. and HAMPEL, D. 2015. Assessing efficiency of D-Vine copula ARMA-GARCH method in Value at Risk forecasting: Evidence from PSE listed companies. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(4): 1287 - 1295. DOI: 10.11118/actaun201563041287 Go to original source...
  11. KRAUSE, A. 2003. Exploring the Limitations of Value at Risk: How Good Is It in Practice, The Journal of Risk Finance, 4(2): 19-28. DOI: 10.1108/eb022958 Go to original source...
  12. KRESTA, A. 2011. Testování vybraných modelů odhadu hodnoty VaR. Ekonomická revue-Central European Review of Economic Issues, 14(3): 201 - 212. DOI: 10.7327/cerei.2011.09.05 Go to original source...
  13. KUPIEC, P. 1995. Techniques for verifying the accuracy or risk measurement models. Journal of Derivatives, 3: 73-84. DOI: 10.3905/jod.1995.407942 Go to original source...
  14. RABINER, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2): 257-286. DOI: 10.1109/5.18626 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.