Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65(2), 759-776 | DOI: 10.11118/actaun201765020759

The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast

Tomáš Vaněk, David Hampel
Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

In this paper we propose a straightforward, flexible and intuitive computational framework for the multi-period probability of default estimation incorporating macroeconomic forecasts. The concept is based on Markov models, the estimated economic adjustment coefficient and the official economic forecasts of the Czech National Bank. The economic forecasts are taken into account in a separate step to better distinguish between idiosyncratic and systemic risk. This approach is also attractive from the interpretational point of view. The proposed framework can be used especially when calculating lifetime expected credit losses under IFRS 9.

Keywords: credit risk, economic forecast, IFRS 9, Markov chains, probability of default
Grants and funding:

This work was supported by the Internal Grant Agency of FBE MENDELU, the project PEF_DP_2016005.

Prepublished online: April 30, 2017; Published: May 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vaněk, T., & Hampel, D. (2017). The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis65(2), 759-776. doi: 10.11118/actaun201765020759
Download citation

References

  1. ABDOU, H. and POINTON, J. 2011. Credit Scoring, Statistical Techniques and Evaluation Criteria: A Review of the Literature. Intelligent Systems in Accounting, Finance & Management, 18(2-3): 59-88. DOI: 10.1002/isaf.325 Go to original source...
  2. ALBU, C. N., ALBU, N., PALI-PISTA, S. F., GIRBINA, M. M., SELIMOGLU, S. K., KOVÁCS, D. M., LUKÁCS, J., MOHL, G., MÜLLEROVÁ, L., PASEKOVÁ, M., ARSOY, A. P., SIPAHI, B. and STROUHAL, J. 2013. Implementation of IFRS for SMEs in Emerging Economies: Stakeholder Perceptions in the Czech Republic, Hungary, Romania and Turkey. Journal of International Financial Management & Accounting, 24(2): 140-175. DOI: 10.1111/jifm.12008 Go to original source...
  3. ALBU, C. N., ALBU, N. and ALEXANDER, D. 2014. When global accounting standards meet the local context - Insights from an emerging economy. Critical Perspectives on Accounting, 25(6): 489-510. DOI: 10.1016/j.cpa.2013.03.005 Go to original source...
  4. ALTMAN, E. I. and KAO, D. 1992. The implications of corporate bond rating drift. Financial Analysts Journal, 48(3): 64-75. DOI: 10.2469/faj.v48.n3.64 Go to original source...
  5. BAILEY, M. 2004. Consumer Credit Quality: Underwriting, Scoring, Fraud Prevention and Collections. Bristol: White Box Publishing.
  6. BANGIA, A., DIEBOLD, F. X., KRONIMUS, A., SCHAGEN, C. and SCHUERMANN, T. 2002. Ratings migration and the business cycle, with application to credit portfolio stress testing. Journal of Banking & Finance, 26(2-3): 445-474. DOI: 10.1016/S0378-4266(01)00229-1 Go to original source...
  7. BASEL COMMITTEE ON BANKING SUPERVISION. 2000. Principles for the Management of Credit Risk. Basel, Switzerland: Bank for International Settlements.
  8. BASEL COMMITTEE ON BANKING SUPERVISION. 2001. Consultative Document: The Internal Ratings-Based Approach. Basel, Switzerland: Bank for International Settlements.
  9. BASEL COMMITTEE ON BANKING SUPERVISION. 2004. International Convergence of Capital Measurement and Capital Standards: A Revised Framework. Basel, Switzerland: Bank for International Settlements.
  10. BEERBAUM, D. 2015. Significant Increase in Credit Risk According to IFRS 9: Implications for Financial Institutions. International Journal of Economics & Management Sciences, 4(9): 1-3. Go to original source...
  11. BELLOTTI, T. and CROOK, J. 2009. Credit scoring with macroeconomic variables using survival analysis. Journal of the Operational Research Society, 60(12): 1699-1707. DOI: 10.1057/jors.2008.130 Go to original source...
  12. BERGER, A. N. and FRAME, S. W. 2007. Small Business Credit Scoring and Credit Availability. Journal of Small Business Management, 45(1): 5-22. DOI: 10.1111/j.1540-627X.2007.00195.x Go to original source...
  13. BERNHARDT, T., ERLINGER, D. and UNTERRAINER, L. 2014. IFRS 9: The New Rules For Hedge Accounting from the Risk Management's Perspective. ACRN Journal of Finance and Risk Perspectives, 3(3): 53-66.
  14. BLUHM, C., OVERBECK, L. and WAGNER, C. 2003. An Introduction to Credit Risk Modeling. Boca Raton, FL: Chapman & Hall/CRC. Go to original source...
  15. BRAGG, S. M. 2016. IFRS Guidebook: 2017 Edition. Colorado: Accounting Tools.
  16. BROOKS, C. 2008. Introductory Econometrics for Finance. 2nd Edition. New York: Cambridge University Press. Go to original source...
  17. BRUCE, M. and GONZÁLEZ-AGUADO, C. 2010. Recovery Rates, Default Probabilities and the Credit Cycle. Journal of Banking & Finance, 34(4): 754-764. DOI: 10.1016/j.jbankfin.2009.04.009 Go to original source...
  18. CARTY, L. V. and FONS, J. S. 1994. Measuring Changes in Corporate Credit Quality, Journal of Fixed Income, 4(1): 27-41. DOI: 10.3905/jfi.1994.408104 Go to original source...
  19. CHANDLER, G. G. and COFFMAN, J. Y. 1979. A comparative analysis of empirical vs. judgmental credit evaluation. Journal of Retail Banking, 1(2): 15-26. Go to original source...
  20. CORBAE, D., STINCHCOMBE, M. B. and ZEMAN, J. 2009. An Introduction to Mathematical Analysis for Economic Theory and Econometrics. Princeton: Princeton University Press. Go to original source...
  21. CROOK, J. N. 1996. Credit Scoring: An Overview. Working paper series 96/13. Edinburgh: Department of Business Studies, University of Edinburgh.
  22. CROOK, J. N., EDELMAN, D. B. and THOMAS, L. C. 2007. Recent developments in consumer credit risk assessment. European Journal of Operational Research, 183(3): 1447-1465. DOI: 10.1016/j.ejor.2006.09.100 Go to original source...
  23. CZECH NATIONAL BANK. 2014. Decree No. 163/2014 Coll., on the performance of the activity of banks, credit unions and investment firms.
  24. CZECH NATIONAL BANK. 2016. Financial Stability Report 2015/2016. Prague: CNB
  25. DELOITTE. 2013. Going up? The impact of impairment proposals on regulatory capital. [Online]. Available at: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Financial-Services/gx-fsi-uk-going-up.pdf [Accessed: 2017, January 15].
  26. DELOITTE. 2014. Fourth Global IFRS Banking Survey: Ready to land. [Online]. Available at: https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/financial-services/ch-en-financial-services-ifrs-fourth-global-banking-survey.pdf [Accessed: 2017, January 15].
  27. DELOITTE. 2016. Sixth Global IFRS Banking Survey: No time like the present. [Online]. Available at: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Financial-Services/gx-fsi-sixth-ifrs-banking-survey.pdf [Accessed: 2017, January 15].
  28. DUFFIE, D., SAITA, L. and WANG, K. 2007. Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3): 635-665. DOI: 10.1016/j.jfineco.2005.10.011 Go to original source...
  29. DVOŘÁKOVÁ, D. 2014. Finanční účetnictví a výkaznictví podle mezinárodních standardů IFRS. Brno: BizBooks.
  30. ENGELMANN, B. and ERMAKOV, K. 2011. Transition Matrices: Properties and Estimation Methods. In: ENGELMANN, B. and RAUHMEIER, R., eds. The Basel II Risk Parameters: Estimation, Validation, Stress Testing - with Applications to Loan Risk Management. Heidelberg: Springer. Go to original source...
  31. ERNST & YOUNG. 2014. Impairment of financial instruments under IFRS 9. London: EY.
  32. EUROPEAN BANKING AUTHORITY. 2016. Report on results from the EBA impact assessment of IFRS 9. London: EBA.
  33. EUROPEAN PARLIAMENT AND COUNCIL. 2013a. Directive 2013/36/EU of the European Parliament and of the Council of 26 June 2013 on access to the activity of credit institutions and the prudential supervision of credit institutions and investment firms, amending Directive 2002/87/EC and repealing Directives 2006/48/EC and 2006/49/EC. Brussels: EP.
  34. EUROPEAN PARLIAMENT AND COUNCIL. 2013b. Regulation (EU) No 575/2013 of the European Parliament and of the Council of 26 June 2013 on prudential requirements for credit institutions and investment firms and amending Regulation (EU) No 648/2012. Brussels: EP.
  35. FEI, F., FUERTES, A.-M. and KALOTYCHOU, E. 2012. Credit rating migration risk and business cycles. Journal of Business Finance and Accounting, 39(1-2): 229-263. DOI: 10.1111/j.1468-5957.2011.02272.x Go to original source...
  36. FIGLIEWSKI, S., FRYDMAN, H. and LIANG, W. 2012. Modelling the effect of macroeconomic factors on corporate default and credit rating transitions. International Review of Economics & Finance, 21(1): 87-105. DOI: 10.1016/j.iref.2011.05.004 Go to original source...
  37. GAVALAS, D. and SYRIOPOULOS, T. 2014. Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle. International Journal of Financial Studies, 2(1): 122-143. DOI: 10.3390/ijfs2010122 Go to original source...
  38. GEBHARDT, G. 2016. Impairments of Greek Government Bonds under IAS 39 and IFRS 9: A Case Study. Accounting in Europe, 13(2): 169-196. DOI: 10.1080/17449480.2016.1208833 Go to original source...
  39. GUPTON, G. M., FINGER, C. C. and BHATIA, M. 1997. CreditMetricsTM - Technical Document, New York: J. P. Morgan.
  40. HAND, D. J. and HENLEY, W. E. 1997. Statistical Classification Methods in Consumer Credit Scoring: A review. Journal of the Royal Statistical Society, Series A, 160(3): 523-541. DOI: 10.1111/j.1467-985X.1997.00078.x Go to original source...
  41. HOOGERVORST, H. 2015. Implementing the IFRS 9 impairment requirements. In: Joint ICAEW and IFRS Foundation conference. London, 15. 9. 2015.
  42. IFRS FOUNDATION. 2013. Financial Instruments: Impairment (Outreach Feedback Summary - Fieldwork). IFRS Staff Paper.
  43. IFRS FOUNDATION. 2015. Financial Instruments 2015 Guide. London: IFRS Foundation.
  44. JAFRY, Y. and SCHUERMANN, T. 2004. Measurement, estimation and comparison of credit migration matrices. Journal of Banking & Finance, 28(11): 2603-2639. DOI: 10.1016/j.jbankfin.2004.06.004 Go to original source...
  45. JINDŘICHOVSKÁ, I., KUBÍČKOVÁ, D. and KOCMANOVÁ, Š. 2014. The development of accounting and application of IFRS in the Czech Republic. Accounting and Management Information Systems, 13(2): 198-235.
  46. LANDO, D. and SKØDEBERG, T. 2002. Analyzing ratings transitions and rating drift with continuous observations. Journal of Banking & Finance, 26(2-3): 423-444. DOI: 10.1016/S0378-4266(01)00228-X Go to original source...
  47. JAKUBÍK, P. 2007. Macroeconomic environment and credit risk. Czech Journal of Economics and Finance, 57(1 -2): 60-78.
  48. JARROW, R. A., LANDO, D. and TURNBULL, S. M. 1997. A Markov Model for the Term Structure of Credit Risk Spreads. Review of Financial Studies, 10(2): 481-523. DOI: 10.1093/rfs/10.2.481 Go to original source...
  49. KIJIMA, M. and KOMORIBAYASHI, K. 1998. A Markov chain model for valuing credit risk derivatives. The Journal of Derivatives, 5: 97-108. DOI: 10.3905/jod.1998.408006 Go to original source...
  50. KLEPÁČ, V. 2015. Default probability prediction with static Merton-D-Vine copula model. European Journal of Business Science and Technology, 1(2): 104-113. DOI: 10.11118/ejobsat.v1i2.30 Go to original source...
  51. KLEPÁČ, V. and HAMPEL, D. 2015. Assessing Efficiency of D-Vine Copula ARMA-GARCH Method in Value at Risk Forecasting: Evidence from PSE Listed Companies. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(4): 1287-1295. DOI: 10.11118/actaun201563041287 Go to original source...
  52. KNĚŽEVIĆ, G., PAVLOVIĆ, V. and VUKADINOVIĆ, P. 2015. IFRS 9 and Implications of "Business Model vs. Management Intent" Criteria on the Quality of Accounting Information. In: Proceedings of the Singidunum University International Scientific Conference "Contemporary Financial Management", pp. 22-26. Go to original source...
  53. KOOPMAN, S. J. and LUCAS, A. 2005. Business and default cycles for credit risk. Journal of Applied Econometrics, 20(2): 311-323. DOI: 10.1002/jae.833 Go to original source...
  54. KPMG. 2013. 01 Newsletter FRM. Prague: KPMG.
  55. KPMG. 2014. First Impressions: IFRS 9 Financial Instruments. London: KPMG.
  56. KREININ, A. and SIDELNIKOVA, M. 2001. Regularization Algorithms for Transition Matrices. Algo Research Quarterly, 4(1-2): 23-40.
  57. LESSMANN, S., BAESENS, B., SEOW, H.-V. and THOMAS, L. C. 2015. Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1): 124-136. DOI: 10.1016/j.ejor.2015.05.030 Go to original source...
  58. LI, X.-L. and ZHONG, Y. 2012. An Overview of Personal Credit Scoring: Techniques and Future Work. International Journal of Intelligence Science, 2(4): 181-189. DOI: 10.4236/ijis.2012.224024 Go to original source...
  59. MESNARD, B., MARGERIT, A., POWER, C. and MAGNUS, M. 2016. Non-performing loans in the Banking Union: stocktaking and challenges. European Parliament, briefing March 18th, 2016.
  60. NGUYEN, H.-T. 2015. How is credit scoring used to predict default in China? EconomiX Working Papers 2015-1, Nanterre: University of Paris West.
  61. NICKELL, P., PERRAUDIN, W. and VAROTTO, S. 2000. Stability of rating transitions. Journal of Banking & Finance, 24(1-2): 203. DOI: 10.1016/S0378-4266(99)00057-6 Go to original source...
  62. NOVOTNY-FARKAS, Z. 2016. The Interaction of the IFRS 9 Expected Loss Approach with Supervisory Rules and Implications for Financial Stability. Accounting in Europe, 13(2): 197-227. DOI: 10.1080/17449480.2016.1210180 Go to original source...
  63. PALEA, V. 2014. Fair value accounting and its usefulness to financial statement users. Journal of Financial Reporting and Accounting, 12(2): 102-116. DOI: 10.1108/JFRA-04-2013-0021 Go to original source...
  64. PESARAN, M. H., SCHUERMANN, T., TREUTLER, B.-J. and WEINER, S. M. 2006. Macroeconomic Dynamics and Credit Risk: A Global Perspective. Journal of Money, Credit, and Banking, 38(5): 1211-1261. DOI: 10.1353/mcb.2006.0074 Go to original source...
  65. RACHEV, S. T., HSU, J. S. J., BAGASHEVA, B. S. and FABOZZI, F. J. 2008. Bayesian Methods in Finance. Hoboken, NJ: John Wiley & Sons.
  66. SIMONS, D. and ROLWES, F. 2009. Macroeconomic Default Modeling and Stress Testing. International Journal of Central Banking, 5(3): 177-204.
  67. SOUSA, M. R., GAMA, J. and BRANDÃO, E. 2013. Introducing Time-Changing Economics into Credit Scoring. FEP Working Papers, no. 513. Porto: University of Porto.
  68. STOTHERS, K. 2015. Implementing the IFRS 9 impairment requirements. In: Joint ICAEW and IFRS Foundation conference. London, 15. 9. 2015.
  69. STROUHAL, J. 2015. Slovník pojmů IFRS. 2nd edition. Prague: Wolters Kluwer.
  70. THOMAS, L. C. 2000. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting, 16(2): 149-172. DOI: 10.1016/S0169-2070(00)00034-0 Go to original source...
  71. VANĚK, T. 2016. Economic Adjustment of Default Probabilities. European Journal of Business Science and Technology, 2(2): 121-129. Go to original source...
  72. WASSERMAN, L. 2004. All of Statistics: A Concise Course in Statistical Inference. New York: Springer. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.