Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65(1), 9-16 | DOI: 10.11118/actaun201765010009

Light Use Efficiency of Aboveground Biomass Production of Norway Spruce Stands

Michal Bellan1,2, Irena Marková1, Andrii Zaika1, Jan Krejza2
1 Centre MendelGlobe - Global climate change and managed ecosystems, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Global Change Research Institute - CzechGlobe, Czech Academy of Sciences, v.v.i., Brno, Czech Republic

Light use efficiency (LUE or photosynthetically active radiation use efficiency) in production of young spruce stands aboveground biomass was determined at the study sites Rájec (the Drahanská vrchovina Highland) and Bílý Kříž (the Moravian-Silesian Beskids Mountains) in 2014 and 2015. The LUE value obtained for the investigated spruce stands were in the range of 0.45-0.65 g DW MJ-1. The different LUE values were determined for highland and mountain spruce stand. The differences were caused by growth and climatic conditions and by the amount of assimilatory apparatus (LAI).

Keywords: absorbed photosynthetically active radiation, aboveground biomass increment, allometric relation
Grants and funding:

This work was supported by the Internal Grant Agency of the Faculty of Forestry and Wood Technology Mendel University in Brno (project No. 10/2013) and by the Technological Agency of the Czech Republic (project No. TA02010945).

Prepublished online: February 28, 2017; Published: March 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bellan, M., Marková, I., Zaika, A., & Krejza, J. (2017). Light Use Efficiency of Aboveground Biomass Production of Norway Spruce Stands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis65(1), 9-16. doi: 10.11118/actaun201765010009
Download citation

References

  1. AHL, D. E., GOWER, S. T., MACKAY, D. S. et al. 2004. Heterogeneity of light use efficiency in a northern Wisconsin forest: implications for modelling net primary production with remote sensing. Remote Sensing of Environment, 93(1 - 2): 168 - 178. DOI: 10.1016/j.rse.2004.07.003 Go to original source...
  2. ALTON, P. 2013. From site-level to global simulation: reconciling carbon, water and energy fluxes over different spatial scales using a process-based ecophysiological land-surface model. Agricultural and Forest Meteorology, 176: 111 - 124. DOI: 10.1016/j.agrformet.2013.03.010 Go to original source...
  3. BARTELINK, H. H., KRAMER, K. and MOHREN, G. M. J. 1997. Applicability of the radiation-use efficiency concept for simulating growth of forest stands. Agricultural and Forest Meteorology, 88(1 - 4): 169 - 179. DOI: 10.1016/S0168-1923(97)00041-5 Go to original source...
  4. BEDNÁŘOVÁ, E. and MERKLOVÁ, L. 2011. Evaluation of vegetative phenological stages in a spruce monoculture depending on parameters of the environment. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(6): 31 - 36. DOI: 10.11118/actaun201159060031 Go to original source...
  5. BINKLEY, D., CAMPOE, O. C., GSPALTL, M. et al. 2013. Light absorption and use efficiency in forests: why patterns differ for trees and stands. Forest Ecology and Management, 288: 5 - 13. DOI: 10.1016/j.foreco.2011.11.002 Go to original source...
  6. BOTTALICO, F., PESOLA, L., VIZZARRI, M. et al. 2016. Modelling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region. Environmental Research, 144(Part B): 72 - 87. DOI: 10.1016/j.envres.2015.10.025 Go to original source...
  7. CANNELL, M. G. R. 1989. Physiological basis of wood production: a review. Scandinavian Journal of Forest Research, 4: 459 - 490. DOI: 10.1080/02827588909382582 Go to original source...
  8. CHEN, J. M., CHEN, W., LIU, J. et al. 2000. Annual carbon balance of Canada's forest during 1895-1996. Global Biogeochemical Cycle, 14: 839 - 850. DOI: 10.1029/1999GB001207 Go to original source...
  9. DELUCIA, E. H., MOORE, D. J. and NORBY, R. J. 2005. Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biogeochemical Cycles, 19(3): 1-9. DOI: 10.1029/2004GB002346 Go to original source...
  10. FANG, H., WEI, S. and LIANG, S. 2012. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sensing of Environment, 119: 43 - 54. DOI: 10.1016/j.rse.2011.12.006 Go to original source...
  11. FORRESTER, D. I. and ALBRECHT, A.T. 2014. Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. Forest Ecology and Management, 328: 94 - 102. DOI: 10.1016/j.foreco.2014.05.026 Go to original source...
  12. GOERNER, A., REICHSTEIN, M. and RAMBAL, S. 2009. Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest. Remote Sensing of Environment, 113(5): 1101 - 1111. DOI: 10.1016/j.rse.2009.02.001 Go to original source...
  13. GOETZ, S. J. and PRINCE, S. D. 1996. Remote sensing of net primary production in boreal forest stands. Agricultural and Forest Meteorology, 78(3 - 4): 149 - 179. DOI: 10.1016/0168-1923(95)02268-6 Go to original source...
  14. GOYNE, P. J., MILROY, S. P., LILLEY, J. M. et al. 1993. Radiation interception radiation use efficiency and growth of barley cultivars. Australian Journal of Agriculture Research, 44: 1351 - 1366. DOI: 10.1071/AR9931351 Go to original source...
  15. GROOT. A. and SAUCIE, J.-P. 2008. Volume increment efficiency of Picea mariana in northern Ontario, Canada. Forest Ecology and Management, 255(5 - 6): 1647 - 1653. DOI: 10.1016/j.foreco.2007.11.024 Go to original source...
  16. GSPALTL, M., BAUERLE, W., BINKLEY, D. et al. 2013. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 288: 49 - 59. DOI: 10.1016/j.foreco.2011.11.044 Go to original source...
  17. HALL, F. G., HILKER, T. and COOPS, N. C. 2012. Data assimilation of photosynthetic light-use-efficiency using multi-angular satellite data: I. Model formulation. Remote Sensing of Environment, 121: 301 - 308. DOI: 10.1016/j.rse.2012.02.007 Go to original source...
  18. HARDIMAN, B. S., GOUGH, CH. M., HALPERIN, A. et al. 2013. Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function. Forest Ecology and Management, 298: 111 - 119. DOI: 10.1016/j.foreco.2013.02.031 Go to original source...
  19. HILKER, T., HALL, F. G., COOPS, N. C. et al. 2010. Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling. Remote Sensing of Environment, 114(12): 2863 - 2874. DOI: 10.1016/j.rse.2010.07.004 Go to original source...
  20. HILKER, T., HALL, F. G., TUCKER, C. J. et al. 2012. Data assimilation of photosynthetic light-use-efficiency using multi-angular satellite data: II Model implementation and validation. Remote Sensing of Environment, 121: 287 - 300. DOI: 10.1016/j.rse.2012.02.008 Go to original source...
  21. HUANG, N., NIU, Z., WU, Ch. et al. 2010. Modeling net primary production of a fast-growing forest using a light use efficiency model. Ecological Modelling, 221(24): 2938 - 2948. DOI: 10.1016/j.ecolmodel.2010.08.041 Go to original source...
  22. CHEN, J. M., GOVIND, A., SONNENTAG, O., ZHANG, Y., BARR, A. and AMIRO, B. 2006. Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140(1-4): 257 - 268. DOI: 10.1016/j.agrformet.2006.08.005 Go to original source...
  23. JENKINS, J. P., RICHARDSON, A. D., BRASWELL, B. H. et al. 2007. Refining ligh-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agricultural and Forest Meteorology, 143(1 - 2): 64 - 79. DOI: 10.1016/j.agrformet.2006.11.008 Go to original source...
  24. KIMBALL, J.S., McDONALD, K.C., RUNNING, S.W. et al. 2004. Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sensing of Environment, 90(2): 243 - 258. DOI: 10.1016/j.rse.2004.01.002 Go to original source...
  25. LANDSBERG, J. J. and WARING, R. H. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3): 209 - 228. DOI: 10.1016/S0378-1127(97)00026-1 Go to original source...
  26. LAW, B. E., THORNTON, P. E., IRVINE, J. et al. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology, 7: 755 - 777. DOI: 10.1046/j.1354-1013.2001.00439.x Go to original source...
  27. LINDER, S. 1985. Potential and actual production in Australian forest stands. In: LANDSBERG, J.J., PARSON, W. (eds.). Research for Forest Management. Melbourne: CSIRO, 11 - 35.
  28. LINDERSON, M.-L., IRITZ, Z. and LINDROTH, A. 2007. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass and Bioenergy, 31(7): 460 - 468. DOI: 10.1016/j.biombioe.2007.01.014 Go to original source...
  29. MARKOVÁ, I. and POKORNÝ, R. 2011a. Allometric relationships for dry mass of aboveground organs estimation in young highland Norway spruce stand. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 59(6): 217 - 224. DOI: 10.11118/actaun201159060217 Go to original source...
  30. MARKOVÁ, I., POKORNÝ, R. and MAREK, M. V. 2011b. Transformation of solar radiation in Norway spruce stands into produced biomass - the effect of stand density. Journal of Forest Science, 57(6): 233 - 241. DOI: 10.17221/46/2010-JFS Go to original source...
  31. McMURTRIE, R. E., GHOLZ, H. L., LINDER, S. et al. 1994. Climatic factors controlling the productivity of pine stands: a model-based analysis. Ecollogical Bulletin (Copenhagen), 43: 173 - 188.
  32. MASEK, J. G., HAYES, D. J., HUGHES, M. J. et al. 2015. The role of remote sensing in process-scaling studies of managed forest ecosystems. Forest Ecology and Management, 335: 109 - 123. DOI: 10.1016/j.foreco.2015.05.032 Go to original source...
  33. MONTEITH, J. L. 1994. Validity of the correlation between intercepted radiation and biomass. Agricultural and Forest Meteorology, 68: 213 - 220. DOI: 10.1016/0168-1923(94)90037-X Go to original source...
  34. MORENO, A., MASELLI, F., GILABERT, M. A. et al. 2012. Assessment of MODIS imagery to track light-use-efficiency in a water-limited Mediterranean pine forest. Remote Sensing of Environment, 123: 359 - 367. DOI: 10.1016/j.rse.2012.04.003 Go to original source...
  35. NAKAJI, T., IDE, R., TAKAGI, K. et al. 2008. Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan. Agricultural and Forest Meteorology, 148(5): 776 - 787. DOI: 10.1016/j.agrformet.2007.11.006 Go to original source...
  36. NELSON, A. S., WAGNER, R. G., DAY, M. E. et al. 2016. Light absorption and light-use efficiency of juvenile white spruce trees in natural stands and plantations. Forest Ecology and Management, 376:158 - 165. DOI: 10.1016/j.foreco.2016.06.019 Go to original source...
  37. NICHOL, C. J., HUEMMRICH, K. F., BLACK, T. A. et al. 2000. Remote sensing of photosynthetic-light-use-efficiency of boreal forest. Agricultural and Forest Meteorology, 101(2 - 3): 131 - 142. DOI: 10.1016/S0168-1923(99)00167-7 Go to original source...
  38. PANGLE, L., VOSE, J. M. and TESKEY, R. O. 2009. Radiation use efficiency in adjacent hardwood and pine forests in the southern Appalachians. Forest Ecology and Management, 257(3): 1034 - 1042. DOI: 10.1016/j.foreco.2008.11.004 Go to original source...
  39. PARK, A. 2015. Carbon storage and stand conversion in a pine-dominated boreal forest landscape. Forest Ecology and Management, 340: 70 - 81. DOI: 10.1016/j.foreco.2014.12.011 Go to original source...
  40. PERRY, S. G., FRASER, A. B., THOMSON, D. W. and NORMAN, J. M. 1988. Indirect sensing of plant canopy structure with simple radiation measurements. Agricultural and Forest Meteorology, 42(2-3): 255 - 278. DOI: 10.1016/0168-1923(88)90082-2 Go to original source...
  41. POKORNÝ, R. and TOMÁŠKOVÁ, I. 2007. Allometric relationship for surface area and dry mass of young Norway spruce aboveground organs. Journal of Forest Science, 53: 548 - 554. DOI: 10.17221/2166-JFS Go to original source...
  42. POKORNÝ, R., TOMÁŠKOVÁ, I., DRÁPELOVÁ, I. et al. 2010. Long-term effects of CO2 enrichment on bud phenology and shoot growth patterns of Norway spruce juvenile trees. Journal of Forest Science, 56(6): 251 - 257. DOI: 10.17221/72/2009-JFS Go to original source...
  43. SCHLEIP, CH., MENZEL, A. and DOSE, V. 2008. Norway spruce (Picea abies): Bayesian analysis of the relationship between temperature and bud burst. Agricultural and Forest Meteorology, 148(4): 631 - 643. DOI: 10.1016/j.agrformet.2007.11.008 Go to original source...
  44. SCHWALM, CH. R., BLACK, T. A., AMIRO, B. D. et al. 2006. Photosynthetic light use efficiency of three biomes across an east-west continental-scale transect in Canada. Agricultural and Forest Meteorology, 140(1 - 4): 269 - 286. DOI: 10.1016/j.agrformet.2006.06.010 Go to original source...
  45. SERICHOL-ESCOBAR, C., VINEGLA PÉREZ, B. and CARREIR, J. A. 2016. Assessing differences in water-and and light-use efficiency in two related fir species under contrasting light conditions: gas exchange instantaneous rates vs. integrated C fixation and water loss. Environmental and Experimental Botany, 122: 49 - 59. DOI: 10.1016/j.envexpbot.2015.09.001 Go to original source...
  46. SMITH, B., KNORR, W., WIDLOWSKI, J.-L. et al. 2008. Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. Forest Ecology and Management, 255(12): 3985 - 3994. DOI: 10.1016/j.foreco.2008.03.056 Go to original source...
  47. SMITHWICK, E. A. H., HARMON, M. E., REMILLARD, S. M. et al. 2002. Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecological Applications, 12: 1303 - 1315. DOI: 10.1890/1051-0761(2002)012[1303:PUBOCS]2.0.CO;2 Go to original source...
  48. SOUČEK, J. and TESAŘ, V. 2008. Methodology of spruce monocultures conversion at sites of natural mixed stands: peer-reviewed methodology [in Czech: Metodika přestavby smrkových monokultur na stanovištích přirozených smíšených porostů]. Jíloviště: Výzkumný ústav lesního hospodářství a myslivosti.
  49. SOUDANI, K., HMIMINA, G., DUFRENE, E. et al. 2014. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleafforests. Remote Sensing of Environment, 144: 73 - 84. DOI: 10.1016/j.rse.2014.01.017 Go to original source...
  50. WANG, Y. P., JARVIS, P. G. and TAYLOR, C. M. A. 1991. PAR Absorption and its relation to above-ground dry matter production of sitka spruce. Journal of Applied Ecology, 28: 547 - 560. DOI: 10.2307/2404567 Go to original source...
  51. WANG, H. S., JIA, G. S., FU, C. B. et al. 2010. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modelling. Remote Sensing of Environment, 114(10): 2248 - 2258. DOI: 10.1016/j.rse.2010.05.001 Go to original source...
  52. WELP, L. R., RANDERSON, J. T. and LIU, H. P. 2007. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agricultural and Forest Meteorology, 147(3 - 4): 172 - 185. DOI: 10.1016/j.agrformet.2007.07.010 Go to original source...
  53. WIRTH, C., SCHUMACHER, J. and SCHULZE, E. 2004. Generic biomass functions for Norway spruce in Central Europe - A meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24(2): 121 - 139. DOI: 10.1093/treephys/24.2.121 Go to original source...
  54. WU, Ch., CHEN, J. M., DESAI, A. R. et al. 2012. Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery. Remote Sensing of Environment, 118: 60 - 72. DOI: 10.1016/j.rse.2011.11.012 Go to original source...
  55. WU, C., GONSAMO, A., CHEN, J. M. et al. 2012. Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Global and Planetary Change, 92 - 93: 179 - 190. DOI: 10.1016/j.gloplacha.2012.05.021 Go to original source...
  56. YUAN, W. P., LIU, S. G., ZHOU, G. S. et al. 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143: 189 - 207. DOI: 10.1016/j.agrformet.2006.12.001 Go to original source...
  57. YUAN, W., CAI, W., XIA, J. et al. 2014. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 192 - 193: 108 - 120. DOI: 10.1016/j.agrformet.2014.03.007 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.