Acta Univ. Agric. Silvic. Mendelianae Brun. 2016, 64(5), 1625-1634 | DOI: 10.11118/actaun201664051625
Univariate Stability Analysis of Genotype×Environment Interaction of Oilseed Rape Seed Yield
- 1 Seed and Plant Improvement Institute (SPII), Karaj, Iran
- 2 Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
- 3 Agronomic and Horticulture Crops Research Department, Mazandaran Agricultural and Natural Resources Research Center, AREEO, Sari, Iran
- 4 Agronomic and Horticulture Crops Research Department, Sistan Agricultural and Natural Resources Research Center, AREEO, Zabol, Iran
- 5 Agronomic and Horticulture Crops Research Department, Golestan Agricultural and Natural Resources Research Center, AREEO, Gorgan, Iran
Thirteen stability statistics were used to analyze genotype × environment (GE) interaction of 36 canola genotypes. Combined analysis of variance indicated that GE interaction significantly influenced seed yield performance. According to Type I stability concept (environmental variance, coefficient of variation and stability variance) genotypes G7, G9 and G13 were the most stable genotypes, while based on the Type II concept (coefficients of three linear regression models), genotypes G33, G27 and G29 could be selected as the most favorable genotypes. Also, genotype G7 was the most favorable genotype according to Type III stability concept (deviation from linear regression method). Genotypes clustering based on stability properties and mean yield grouped them into three distinct classes. Coefficient of determination for the canola genotypes indicated that genotypes G27 and G33 were the most stable genotypes but the genotypes G1, G10 and G25 had the highest desirability index and were the most stable ones. The plot of principal component analysis was used for graphic display of the relationships among statistics and the first axis distinguished the Type II of stability concept from other types and mean yield groups near this stability type. However, based on most statistics and mean yield performance, genotypes G9 or Fanaei-6 (2592.47 kg ha-1), G11 or Fanaei-14 (2592.47 kg ha-1), G12 Fanaei-15 or (2592.47 kg ha-1) and G19 or Dez-7169 (2592.47 kg ha-1) were the most stable and favorable genotypes and are recommended for national release Iran.
Keywords: adaptation, brassica napus, multi-environmental trials, regression analysis
Prepublished online: October 31, 2016; Published: November 1, 2016 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- ADUGNA, A. 2007. Assessment of yield stability in sorghum. African Crop Science Journal, 15: 83 - 92.
Go to original source...
- ADUGNA, W., LABUSCHAGNE, M. T. 2002. Genotype-environment interactions and phenotypic stability analyses of linseed in Ethiopia. Plant Breeding, 121: 66 - 71. DOI: 10.1046/j.1439-0523.2002.00670.x
Go to original source...
- BASFORD, K. E., COOPER, M. 1998. Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia. Australian Journal of Agricultural Research, 49: 153 - 174. DOI: 10.1071/A97035
Go to original source...
- BECKER, H. C. 1981. Correlations among some statistical measures of phenotypic stability. Euphytica, 30: 835 - 840. DOI: 10.1007/BF00038812
Go to original source...
- COOPER, M., RAJATASEREEKUL, S., IMMARK, S., FUKAI, S. and BASNAYAKE, J. 1999. Rainfed lowland rice breeding strategies for Northeast Thailand I. Genotypic variation and genotype × environment grain yield. Field Crops Research, 64: 131 - 151. DOI: 10.1016/S0378-4290(99)00056-8
Go to original source...
- COOPER, M., WOODRUFF, D. R., PHILLIPS, I. G., BASFORD, K. E., GILMOUR, A. R. 2001. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Research, 69: 47 - 67. DOI: 10.1016/S0378-4290(00)00131-3
Go to original source...
- EBERHART, S. A., RUSSELL, W. A. 1966. Stability parameters for comparing varieties. Crop Science, 6: 36 - 40. DOI: 10.2135/cropsci1966.0011183X000600010011x
Go to original source...
- ESCOBAR, M., BERTI, M., MATUS, I., TAPIA, M., JOHNSON, B. 2011. Genotype × environment interaction in canola (Brassica napus L.) seed yield in Chile. Chilean Journal of Agricultural Research, 71: 175 - 186. DOI: 10.4067/S0718-58392011000200001
Go to original source...
- FAOSTAT. 2015. FAOSTAT Data. [Online]. Available at: www.faostat.fao.org.
- FINLAY, K. W., WILKINSON, G. N. 1963. The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14: 742 - 754. DOI: 10.1071/AR9630742
Go to original source...
- FLORES. F., MORENO. M. T., CUBERO, J. I. 1998. A comparison of univariate and multivariate methods to analyze environments. Field Crops Research, 56: 271 - 286. DOI: 10.1016/S0378-4290(97)00095-6
Go to original source...
- FRANCIS, T. R., KANNENBERG, L. W. 1978. Yield stability studies in short-season maize: I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58: 1029 - 1034. DOI: 10.4141/cjps78-157
Go to original source...
- FREEMAN, G. H., PERKINS, J. M. 1971. Environmental and genotype-environmental components of variability VIII. Relations between genotypes grown in different environments and measures of these environments. Heredity, 27: 15 - 23. DOI: 10.1038/hdy.1971.67
Go to original source...
- HARPER, F. R., BERKENKAMP, B. 1975. Revised growth-stage key for Brassica campestris and B. napus. Canadian Journal of Plant Science, 55: 657 - 658. DOI: 10.4141/cjps75-103
Go to original source...
- HERNANDEZ, C. M, CROSSA, J., CASTILLO, A. 1993. The area under the function: an index for selecting desirable genotypes. Theoretical Applied Genetics, 87: 409 - 415. DOI: 10.1007/BF00215085
Go to original source...
- HUSSEIN, M. A., BJORNSTAD, A., AASTVEIT, A. H. 2000. SASG × ESTAB, A SAS program for computing genotype x environment stability statistics. Agronomy Journal, 92: 454 - 459. DOI: 10.2134/agronj2000.923454x
Go to original source...
- LIN, C. S., BINNS, M. R., LEFKOVITCH, L. P. 1986. Stability analysis: where do we stand? Crop Science, 26: 894 - 900. DOI: 10.2135/cropsci1986.0011183X002600050012x
Go to original source...
- MARJANOVIC-JEROMELA, A., NAGL, N., GVOZDANOVIÆ-VARGA, J., HRISTOV, N., KONDIÆ-©PIKA, A., VASIÆ, M., MARINKOVIÆ, R. 2011. Genotype by environment interaction for seed yield per plant in rapeseed using AMMI model. Pesquisa Agropecuária Brasileira, 46: 174 - 181. DOI: 10.1590/S0100-204X2011000200009
Go to original source...
- PERKINS, J. M., JINKS, J. L. 1968. Environmental and genotype-environmental components of variability. Heredity, 23: 339 - 356. DOI: 10.1038/hdy.1968.48
Go to original source...
- PINTHUS, J. M. 1973. Estimate of genotype value: a proposed method. Euphytica, 22: 121 - 123. DOI: 10.1007/BF00021563
Go to original source...
- POPOVIC, R., STOJ©IN, V., STANTIÆ, M., KNE®EVIÆ, M., STAVLJANIN, B. 2010. Economical aspects of rapeseed production in Serbia. Field and Vegetable Crops Research, 47: 179 - 185.
- RODRIGUEZ, J., SAHAGUN, J., VILLASENOR, H., MOLINA, J., MARTINEZ, A. 2002. Stability of seven commercial varieties of wheat (Triticum aestivum L.). Revista Fitotecnia Mexicana, 25: 143 - 151.
- SABAGHNIA, N., DEHGHANI, H., ALIZADEH, B., MOHGHADDAM, M. 2010. Genetic analysis of oil yield, seed yield, and yield components in rapeseed using additive main effects and multiplicative interaction biplots. Agronomy Journal, 102: 1361 - 1368. DOI: 10.2134/agronj2010.0084
Go to original source...
- SABAGHNIA, N., DEHGHANI, H., SABAGHPOUR, S. H. 2006. Nonparametric methods for interpreting genotype × environment interaction of lentil genotypes. Crop Science, 46: 1100 - 1106. DOI: 10.2135/cropsci2005.06-0122
Go to original source...
- SABAGHNIA, N., KARIMIZADEH, R., MOHAMMADI, M. 2012. Genotype by environment interaction and stability analysis for grain yield of lentil genotypes. ®emdirbystė=Agriculture, 99: 305 - 312.
- SABAGHNIA, N., MOHAMMADI, M., KARIMIZADEH, R. 2013. Principal coordinate analysis of genotype × environment interaction for grain yield of bread wheat in the semi-arid regions. Genetika, 45: 691 - 701. DOI: 10.2298/GENSR1303691S
Go to original source...
- SAS INSTITUTE. 2004. SAS/STAT® User's guide. Version 9.1. Vol. 1. Cary, North Carolina, USA: SAS Institute.
- SHUKLA, G. K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29: 237 - 245. DOI: 10.1038/hdy.1972.87
Go to original source...
- SPSS INSTITUTE. 2004. SPSS 14. SPSS User's guide. Chicago: SPSS Institute.
- TAI, G. C. C. 1971. Genotypic stability analysis and application to potato regional trials. Crop Science, 11: 184 - 190. DOI: 10.2135/cropsci1971.0011183X001100020006x
Go to original source...
- ZHANG, H., BERGER, J. D., MILROY, S. P. 2013. Genotype ×environment interaction studies highlight the role of phenology in specific adaptation of canola (Brassica napus) to contrasting Mediterranean climates. Field Crops Research, 144: 77 - 88. DOI: 10.1016/j.fcr.2013.01.006
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.