Acta Univ. Agric. Silvic. Mendelianae Brun. 2016, 64(4), 1173-1179 | DOI: 10.11118/actaun201664041173

Nitrogen and Phosphorus Availability Effect on Activity of Cellulolytic Microorganisms in Meadows

Antonín Kintl1, Adam Nawrath2, Jakub Elbl3, Ivan Tůma4, Marcela Muchová3, Martin Brtnický3, Jindřich Kynický3
1 Agricultural research Ltd. Zahradní 1, 664 41 Troubsko, Czech Republic
2 Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno Czech Republic
3 Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic, Zemědělská 1, 613 00 Brno 13, Czech Republic
4 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno Czech Republic

Meadows occupy more than 23 % of agricultural land in the Czech Republic and also represent the largest pool of carbon in soil organic matter. The organic material is an essential component of healthy soil. Decomposition of organic matter is a biological process, affected by high amount of N and P fertilizer applied in the second half of the twentieth century. This work presents the analysis of the effect of available nutrients nitrogen and phosphorus on the activity of cellulolytic microorganisms in permanent grassland of Sanguisorba-Festucetum comutatae association in the soil surface in the Protected Landscape Area of Žďárské Hills. Contents of available nutrients established by the Mehlich III method were measured ex situ. Data referring cellulose decomposition rates were obtained in situ using the standard mesh-bag method. In the field experiment, the highest loss of cellulose was recorded in variants with the addition of nutrients (

PK, 90N + PK and

180N + PK) with result 90.38 % on average. The difference was statistically significant, compared with the control variant without added nutrients 27.87 % (P < 0.05). The added amount of nitrogen in the variant 90 kg of N + PK per ha had no significant effect on loss of cellulose compared to PK variant, as well as variant 180 kg of N + PK per ha. From the results obtained, it is evident that the highest decomposition of cellulose was observed at variant with added phosphorus, compared to variant with nitrogen. Moreover, the effect of different intensity of grassland utilization was found: the amount of decomposed cellulose was higher in two variants (control and 90N + PK) of two cut system in comparison with the same variant in three cut system.

Keywords: available nutrients, meadows, cellulose decomposition, mesh-bag
Grants and funding:

This work was supported by National Agency for Agricultural Research (NAZV), project: The possibilities for retention of reactive nitrogen from agriculture in the most vulnerable infiltration area of water resources, registration no.: QJ 1220007. The work was supported by the IGA - Internal Agency Faculty of Agronomy MENDELU No. IP 28/2015.

Prepublished online: August 30, 2016; Published: September 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kintl, A., Nawrath, A., Elbl, J., Tůma, I., Muchová, M., Brtnický, M., & Kynický, J. (2016). Nitrogen and Phosphorus Availability Effect on Activity of Cellulolytic Microorganisms in Meadows. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis64(4), 1173-1179. doi: 10.11118/actaun201664041173
Download citation

References

  1. ACHARYA, B. S., RASMUSSEN, J. and ERIKSEN, J. 2012. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agriculture, Ecosystems, 153: 33 - 39. DOI: 10.1016/j.agee.2012.03.001 Go to original source...
  2. AMMANN, C., FLECHARD, C. R., LEIFELD, J. et al. 2007. The carbon budget of newly established temperate grassland depends on management intensity. Agric. Ecosyst. Environ., 121(1): 5 - 20. DOI: 10.1016/j.agee.2006.12.002 Go to original source...
  3. BALDOCK, J. A. 2007. Composition and cycling of organic carbon in soil. In: Nutrient Cycling in Terrestrial Ecosystems. Berlin: Springer Heidelberg, p. 1 - 35. Go to original source...
  4. BERG, B. and MATZNER, E. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5(1): 1 - 25. DOI: 10.1139/a96-017 Go to original source...
  5. BUNDY, L. G. and MEISINGER, J. J. 1994. Nitrogen availability indices. In: Weaver R. W et al. (Eds.), Methods of soil analysis. Part 2-Microbiological and biochemical properties. Madison, Wisconsin: Soil Science Society of America, Book Series no. 5, 951 - 984. Go to original source...
  6. BRADFORD, M. A. 2013. Thermal adaptation of decomposer communities in warming soils. Frontiers in Microbiology, 4: 1 - 16. DOI: 10.3389/fmicb.2013.00333 Go to original source...
  7. CLEVELAND, C. C. and LIPTZIN, D. 2007. C:N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? Biochemistry, 85(3): 235 - 252. Go to original source...
  8. CONANT, R. T., PAUSTIAN, K. and ELLIOTT, E. T. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl., 11(2): 343 - 355. DOI: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 Go to original source...
  9. ELBL, J., PLOŠEK, L., KINTL, A. et al. 2014. The effect of increased doses of compost on leaching of mineral nitrogen from arable land. Polish Journal of Environmental Studies, 23(3): 697 - 703.
  10. ESWARAN, H., VAN DEN BERG, E. and REICH, P. F. 1993. Organic Carbon in Soils of the World. Soil Sci. Soc. Am. J., 57(1): 192 - 194. DOI: 10.2136/sssaj1993.03615995005700010034x Go to original source...
  11. FORNARA, D. A., BANIN, L. and CRAWLEY, M. J. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology, 19(12): 3848 - 3857. DOI: 10.1111/gcb.12323 Go to original source...
  12. FONTAINE, S., BARDOUX G., ABBADIE L. et al. 2004. Carbon input to soil may decrease soil carbon content. Ecology Letters, 7(4): 314 - 320. DOI: 10.1111/j.1461-0248.2004.00579.x Go to original source...
  13. GRANT, A. M., HANSON, P. K., MALONE, L. et al. 2001. NBD-Labeled Phosphatidylcholine and Phosphatidylethanolamine are Internalized by Transbilayer Transport across the Yeast Plasma Membrane. Traffic, 2(1):37 - 50. DOI: 10.1034/j.1600-0854.2001.020106.x Go to original source...
  14. GRIFFITHS, B. S., SPILLES, A. and BONKOWSKI, M. 2012. C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. [Online]. Ecological Processes, 1(1): article no. 6. Available at: http://link.springer.com/article/10.1186/2192-1709-1-6#. [Accessed 2015, October 25]. Go to original source...
  15. HOLÚBEK, R., JANČOVIČ, J., KRAJČOVIČ, V. et al. 1997. Lúkarstvo a pasienkárstvo. Nitra: Slovenská poľnohospodárska univerzita v Nitre.
  16. JORDAN, N. et al. 2007. Sustainable development of the agricultural bio-economy. Science, 316(5831): 1570 - 571. DOI: 10.1126/science.1141700 Go to original source...
  17. HREVUŠOVÁ, Z., HAKL, J., MARTINEK, J. et al. 2012. Cellulose and cutisin decomposition in soil of Alopecuretum meadow. Acta Univ. Agric. Silvic. Mendelianae Brun., 60(6): 129 - 134. DOI: 10.11118/actaun201260060129 Go to original source...
  18. KRÁLOVEC, J. and RAIS, I. 1990. Vliv vodního a živného režimu půd na produktivitu travního porostu. In: Optimalizace vodního režimu půd pro zemědělské kultivary. VÚZZP, Praha, 45 - 54.
  19. LOŠÁK, T., HLUŠEK, J., FILIPČÍK, R. et al. 2010. Effect of nitrogen fertilization on metabolisms of essential and non-essential amino acids in field grown grain maize (Zea mays L.). Plant, Soil and Environment, 56(12): 574 - 579. Go to original source...
  20. LUCIAN, C. M. and GAVRIL, M. A. 2013. Influence of organic and mineral fertilization on a permanent grassland biodiversity and floristic composition. Current Opinion in Biotechnology, 24(S1): 121 - 122. Go to original source...
  21. LUPWAYI, N. Z., RICE, W. A. and CLAYTON, G. W. 1999. Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation. Canadian Journal of Soil Science, 79(2): 273 - 280. DOI: 10.4141/S98-052 Go to original source...
  22. MAŇÁSEK, J., LOŠÁK, T., PROKEŠ, K., et al. 2013. Effect of nitrogen and potassium fertilization on micronutrient content in grain maize (Zea mays L.). Acta Univ. Agric. Silvic. Mendelianae Brun., 61(1): 123 - 128. DOI: 10.11118/actaun201361010123 Go to original source...
  23. MEHLICH, A. 1984. Mehlich III Soil test extractant. Communications in Soil Science and Plant Analysis, 15(12): 1409 - 1416. DOI: 10.1080/00103628409367568 Go to original source...
  24. MENDELSSOHN, I. A., SORRELL, B. K., BRIX, H., et al. 1999. Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquatic Botany, 64(3 - 4): 381 - 398. DOI: 10.1016/S0304-3770(99)00065-0 Go to original source...
  25. MRKVIČKA, J. and VESELÁ, M. 2007. Antropogenní zásahy a sukcese druhů lučního porostu. In: Súčasnosť a perspektívy krmovinárského výskumu a vzdelávania v multifunkčním využívání krajiny. Nitra: Slovenská poľnohospodárska univerzita v Nitre, 72 - 75.
  26. PEOPLES, M. B., FAIZAH, A. W., RERKASEM, B.et al. 1989. Methods for evaluating nitrogen fixation by modulated legumes in the field. Canberra: Australian Centre for International Agricultural Research.
  27. REDFIELD, A. C. 1958. The biological control of chemical factors in the environment. American Scientist, 46(3): 205 - 221.
  28. RIGGS, C. E., HOBBIE, S. E., BACH, E. M. et al. 2015. Nitrogen addition changes grassland soil organic matter decomposition. Biochemistry, 125(2): 203 - 219. Go to original source...
  29. RICHTER, R., HLUŠEK, J. and HŘIVNA, L. 1999. Výživa a hnojení. Brno: Mendelova lesnická a zemědělská univerzita v Brně.
  30. POSPÍŠILOVÁ, L., FORMÁNEK, P., LIPTAJ, L. et al. 2011. Land use effects on carbon quality and soil biological properties in Eutric Cambisol. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 61(7): 661 - 669. DOI: 10.1080/09064710.2010.539576 Go to original source...
  31. STOATE, C., BÁLDI, A., BEJA, P.,et al. 2009. Ecological impacts of early 21st century agricultural change in Europe. Journal of Environmental Management, 91(1): 22 - 46. DOI: 10.1016/j.jenvman.2009.07.005 Go to original source...
  32. SEMENOV A. M., BATOMUNKUEVA B. P., NIZOVTSEVA D. V. et al. 1996. Method of determination of cellulase activity in soils and in microbial cultures, and its calibration, J. Micro-biol. Meth., 24(3): 259 - 267. DOI: 10.1016/0167-7012(95)00011-9 Go to original source...
  33. SELIBO, M., MAYER, B., NICOLARDOT, B., PINAY,et al. 2013. Long-term fate of nitrate fertilizer in agricultural soils, Environmental Sciences, 110(45): 18185 - 18189. Go to original source...
  34. SZEGI, J. 1988. Cellulose Decomposition and soil Fertility. 1st Edition. Budapest: Akadémiai Kiadó.
  35. ŠIMEK, M. 2003. Základy nauky o půdě - 3. Biologické procesy a cykly prvků. České Budějovice: Biologická fakulta Jihočeské univerzity.
  36. TESAŘOVÁ M. 1987. Stanovení intenzity rozkladu modelové celulozy v půdě - terén metoda. In: Metody studia travinných ekosystémů. Praha: Academia, 191 - 193.
  37. TŮMA, I. 1998. Variation in the activity of cellulolytic microorganisms in several ecosystems of the Beskydy Mts. Ekológia, 17(3): 316 - 326.
  38. UHLÍŘOVÁ, E., ŠIMEK M. and ŠANTRŮČKOVÁ, H. 2005. Microbial transformation of organic matter in soils of montane grasslands under different management. Applied Soil Ecology, 28(3): 225 - 235. DOI: 10.1016/j.apsoil.2004.08.002 Go to original source...
  39. WANG, Y. P, LAW, R. M. and PAK, B. 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7(7): 2261 - 2282. DOI: 10.5194/bg-7-2261-2010 Go to original source...
  40. VERHOEVEN, J. T. A. and SCHMITZ, M. B. 1991. Control of plant growth by nitrogen and phosphorus in mesotrophic fens. Biogeochemistry, 12(2): 135 - 148. DOI: 10.1007/BF00001811 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.