Acta Univ. Agric. Silvic. Mendelianae Brun. 2016, 64(4), 1155-1166 | DOI: 10.11118/actaun201664041155

The Evaluation of Real Time Milk Analyse Result Reliability in the Czech Republic

Oto Hanuš1, Luděk Stádník2, Marcela Klimešová1, Martin Tomáška3, Lucie Hasoňová4, Daniel Falta5, Josef Kučera5, Jaroslav Kopecký1, Radoslava Jedelská1
1 Dairy Research Institute, Ltd., Prague, Czech Republic
2 Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
3 Dairy Research Institute, Žilina, Slovakia
4 University of South Bohemia, Faculty of Agriculture, České Budějovice, Czech Republic
5 Mendel University in Brno, Faculty of AgriSciences, Department of Animal Breeding, Czech Republic

The good result reliability of regular analyzes of milk composition could improve the health monitoring of dairy cows and herd management. The aim of this study was the analysis of measurement of abilities and properties of RT (Real Time) system (AfiLab = AfiMilk (NIR measurement unit (near infrared spectroscopy) and electrical conductivity (C) of milk by conductometry) + AfiFarm (calibration and interpretation software)) for the analysis of individual milk samples (IMSs). There were 2 × 30 IMSs in the experiment. The reference values (RVs) of milk components and properties (fat (F), proteins (P), lactose (L), C and the somatic cell count (SCC)) were determined by conventional (direct and indirect: conductometry (C); infrared spectroscopy 1) with the filter technology and 2) with the Fourier transformations (F, P, L); fluoro-opto-electronic cell counting (SCC) in the film on the rotation disc (1) and by flow cytometry (2)) methods. AfiLab method (alternative) showed less close relationships as compared to the RVs as relationships between reference methods. This was expected. However, these relationships (r) were mostly significant: F from .597 to .738 (P ≤ 0.01 and ≤ 0.001); P from .284 to .787 (P > 0.05 and P ≤ 0.001); C .773 (P ≤ 0.001). Correlations (r) were not significant (P > 0.05): L from -.013 to .194; SCC from -.148 to -.133. Variability of the RVs explained the following percentages of variability in AfiLab results: F to 54.4 %; P to 61.9 %; L only 3.8 %; C to 59.7 %. Explanatory power (reliability) of AfiLab results to the animal is increasing with the regularity of their measurements (principle of real time application). Correlation values r (x minus 1.64 × sd for confidence interval (one-sided) at a level of 95 %) can be used for an alternative method in assessing the calibration quality. These limits are F 0.564, P 0.784 and C 0.715 and can be essential with the further implementation of this advanced technology of dairy herd management.

Keywords: cow, raw milk, flow near infrared spectroscopy, result reliability, fat, protein, lactose, electrical conductivity, somatic cell count
Grants and funding:

This paper was supported by projects NAZV KUS QJ1210301, "S" grant MŠMT ČR, APVV-0357-12, NAZV QH 81210, IGA FA MENDELU TP 5/2014 and RO 1415.

Prepublished online: August 30, 2016; Published: September 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hanuš, O., Stádník, L., Klimešová, M., Tomáška, M., Hasoňová, L., Falta, D., ... Jedelská, R. (2016). The Evaluation of Real Time Milk Analyse Result Reliability in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis64(4), 1155-1166. doi: 10.11118/actaun201664041155
Download citation

References

  1. ARNDT, G., WEISS, H. and UBBEN, E. H. 1991. Der Gehalt somatischer Zellen in der Rohmilch: Beiträge zu Messung, Interpretation und praktischer Bedeutung für Milchqualität und Mastitisbekämpfung. I. Statistische Verfahren zur Beurteilung der Datenqualität von Ringversuchsergebnissen, dargestellt am Beispiel der Zählung somatischer Zellen in Milch. Kieler Milchwirtschaftliche Forschungsbericht, 43: 167 - 178.
  2. BARBANO, D. 2009. Reference system and centralized calibration for milk (payment) testing. In: Proc. of 36th ICAR biennial session. Niagara Falls, USA, 315 - 316.
  3. BAUMGARTNER, C. 2009. The way to reference systems and centralised calibration for milk recording testing. Present status in Germany. In: Proc. of 36th ICAR biennial session. Niagara Falls, USA, 307.
  4. CASTANEDA, R. 2009. Reference system and centralized calibration for milk recording testing in Argentina. In: Proc. of 36th ICAR biennial session. Niagara Falls, USA. 309 - 313.
  5. ČNI. 1973. Methods for testing of milk and milk products [In Czech]. ČSN 57 0530 1973. Prague: Czech Normalization Institute.
  6. ČNI. 1999. Determination of milk composition by mid-infrared analyzer [In Czech]. ČSN 57 0536 1999. Ptague: Czech Normalization Institute.
  7. ČNI. 2005. Conformity assessment - General requirements for the competence of testing and calibration laboratories [In Czech]. CSN EN ISO/IEC 17025 2005. Prague: Czech Normalization Institute.
  8. ČNI. 1998. Milk - Somatic cell count determination - Part 1: Microscopy method. CSN EN ISO 13366 - 1 (57 0531) 1998. Prague: Czech Normalization Institute.
  9. ČNI. 2007. Milk - Somatic cell count determination - Part 2: Manual for fluoro-opto-electronic instrument operation. CSN EN ISO 13366 - 2 (57 0531) 2007. Prague: Czech Normalization Institute.
  10. DIEPERSLOOT, J. E. 2011. The use of technology for improved cow health to increase production and reproduction. In: Proceedings 47th Florida dairy production konference. Gainesville, USA, 30 - 34.
  11. DRIFT VAN DER, S. G. K., JORRITSMA, R., SCHONEWILLE, J. T., KNIJN, H. M. and STEGEMAN, J. A. 2012. Routine detection of hyperketonemia in dairy cows using Fourier transform infrared spectroscopy analysis of β-hydroxybutyrate and acetone in milk in combination with test-day information. Journal of Dairy Science, 95(9): 4886 - 4898. DOI: 10.3168/jds.2011-4417 Go to original source...
  12. DUFFIELD, T. F., KELTON, D. F., LESLIE, K. E., LISSEMORE, K. D. and LUMSDEN, J. H. 1997. Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Canadian Veterinary Journal, 38: 713 - 718.
  13. DUFFIELD, T. F., LISSEMORE, K. D., MC BRIDE, B. W. and LESLIE, K. E. 2009. Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science, 92: 571 - 580. DOI: 10.3168/jds.2008-1507 Go to original source...
  14. DURKIN, J. 2012. AfiLab the Tool for Ketosis. Available at: https://www.google.cz/url?sa=tandamp;rct=jandamp;q=andamp;esrc=sandamp;source=webandamp;cd=1andamp;cad=rjaandamp;uact=8andamp;ved=0ahUKEwi9yKKlwcrOAhXEaRQKHQKgCDIQFggbMAAandamp;url=http%3A%2F%2Fwww.oabp.ca%2FMembers%2FContinuing%2520Education%2F2012%2FFall%2FDurkin%2520-%2520AfiLab_The%2520tool%2520for%2520ketosis.pptandamp;usg=AFQjCNGwmfxF31mSSZqKOp0_aCHuqOKnzAandamp;sig2=1Au4LHBt2JKoN0fqsGcCvgandamp;bvm=bv.129759880,d.d24.
  15. GOLC TEGER, S. 1997. Slovenia in the European network of dairy laboratories. In: 5th International Symposium "Animal Science Days", Opatija, Animal science days, Agriculturae Conspectus Scientificus, 62: 37 - 40.
  16. GOLC TEGER, S., POGAČAR, J. and VALINGER, E. 1996. The Slovenian dairy laboratories proficiency testing scheme. In: Analytical quality and economic efficiency in dairy food laboratories: abstracts. Sonthofen, International Dairy Federation (IDF), AOAC International, German Dairy Association.
  17. FUCHS, M. 2000. Der AFEMA-Sterntest: ein Beitrag zur internationalen Harmonisierung der Rohmilchanalytik. XXVIII ÓVÁRI TUDOMÁNYOS NAPOK. Mosonmagyaróvár, 71 - 75.
  18. GEISHAUSER, T. and ZIEBELL, K. L. 1995. Fett/Eiweiss-Quotient in der Milch von Rinderherden mit Vorkommen von Labmagenverlagerungen. Deutsche Tierärztliche Wochenzeitschrift, 102: 469 - 471.
  19. GRAPPIN, R. 1993. European network of dairy laboratories. In: Proceedings of an International Analytical Quality Assurance and Good Laboratory Practice in Dairy Laboratories. Sonthofen/Germany, 1992-05-18/20. Brussels, 205 - 211.
  20. GRAPPIN, R. 1987. Definition and evaluation of the overall accuracy of indirect methods of milk analysis - aplication to calibration procedure and quality control in dairy laboratory. Bulletin of the International Dairy Federation, Doc. 208. IDF Provisional Standard 128: 3 - 12.
  21. HANUŠ, O., GENČUROVÁ, V., JANŮ, L., JEDELSKÁ, R. 2007. A framework performance of main elements of QA system of chemical and physical methods in reference and routine laboratories for raw milk quality analyses in the CR [In Czech]. In: Sborník přednášek, 2 THETA Analytical standards and equipment. Komorní Lhotka, 33 - 50.
  22. HANUŠ, O., GENČUROVÁ, V., LANDOVÁ, H., JEDELSKÁ, R., KOPECKÝ, J. and DOLÍNKOVÁ, A. 2011 a. Spectrum enlargement at central calibration and proficiency testing by National reference laboratory for raw milk in Rapotín [In Czech]. Výzkum v chovu skotu / Cattle Research, LIII, 193(1): 60 - 71.
  23. HANUŠ, O., SOJKOVÁ, K., HANUŠOVÁ, K., SAMKOVÁ, E., HRONEK, M., HYŠPLER, R., KOPECKÝ, J. and JEDELSKÁ, R. 2011 b. An experimental comparison of methods for somatic cell count determination in milk of various species of mammals. Acta universitatis agriculturae et silviculturae Mendelianae Brunensis, LIX(1): 67 - 82. DOI: 10.11118/actaun201159010067 Go to original source...
  24. HANUŠ, O., YONG, T., KUČERA, J., GENČUROVÁ, V., DUFEK, A., HANUŠOVÁ, K. and KOPEC, T. 2011 c. The predicative value and correlations of two milk indicators in monitoring energy metabolism of two breeds of dairy cows. Scientia Agriculturae Bohemica, 42(1): 1 - 11.
  25. HANUŠ, O., ŽVÁČKOVÁ, I., GENČUROVÁ, V. and GABRIEL, B. 1992. A relationship between milk lactose content and indicators of the mammary gland health in the first third of lactation [In Czech]. Veterinary Medicine (Prague), 37(11): 595 - 604.
  26. HEESCHEN, W. H., UBBEN, E. H. and RATHJEN, G. 1994. Somatic cell counting in milk: the use of the principle of flow cytometry for somatic cell counting (Somacount) and comparison with the results obtained with the fluorescent optical principle (Fossomatic 360). Kieler Milchwirtschaftliche Forschungsbericht, 46: 190 - 211.
  27. ISHAY, E., LEMBERSKIY KUZIN, L., KATZ, G., PINSKY, N. 2011. Calibration, monitoring and control approach for multi-devices system performing analysis in rough environment. [Online]. S.A.E. Afikim. Available at: http://www.icar.org/Documents/Bourg-en-Bresse2011/Presentations/session%204%20-2023%20am/3%20Lembersky%20Kusini.pdf.
  28. JANKOVSKÁ, R. and ŠUSTOVÁ, K. 2003. Analysis of cow milk by near-infrared spectroscopy. Czech Journal of Food Science, 21(4): 123 - 128. DOI: 10.17221/3488-CJFS Go to original source...
  29. KAMPHUIS, C., PIETERSMA, D., VAN DER TOL, R. P. P., WIEDEMANN, M. and HOGEVEEN, H. 2008 a. Using sensor data patterns from an automatic milking system to develop predictive variables for classifying clinical mastitis and abnormal milk. Computers and Electronics in Agriculture, 62(2): 169 - 181. DOI: 10.1016/j.compag.2007.12.009 Go to original source...
  30. KAMPHUIS, C., SHERLOCK, R., JAGO, J., MEIN, G. and HOGEVEEN, H. 2008 b. Automated detection of clinical mastitis is improved by on-line monitoring of somatic cell count. Journal of Dairy Science, 91(12): 4560 - 4570. DOI: 10.3168/jds.2008-1160 Go to original source...
  31. KAMPHUIS, C., MOLLENHORST, H., HEESTERBEEK, J. A. P. and HOGEVEEN, H. 2010. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision tree induction. Journal of Dairy Science, 93(8): 3616 - 3627. DOI: 10.3168/jds.2010-3228 Go to original source...
  32. KARP, H. J. and PETERSSON WOLFE, C. 2010. Use of milk lactose concentration as an indicator of mastitis following the validation of a novel in-line milk analysis system designed to measure milk components. In: The first North American conference on precision dairy management. 1 - 2.
  33. KATZ, G. 2007. Milk Analyzer. Real Time Measuring of Milk Components. [Online]. AfiLab Available at: http://www.icar.org/Documents/Verona_Presentations/SAE_Afikim_Katz.pdf.
  34. KATZ, G. and PINSKY, N. 2008. AfiLab™. A new approach to perform analysis of milk components incorporating statistical methods adapted in a real time sensor. [Online]. Available at: https://www.google.cz/?gfe_rd=crandamp;ei=iKnSVuG9IOOg8wfwiKroDAandamp;gws_rd=ssl#q=AfiLab+A+new+approach+to+perform+analysis+Gil+Katz.
  35. KAWASAKI, M., KAWAMURA, S., TSUKAHARA, M., MORITA, S., KOMIYA, M. and NATSUGA, M. 2008. Near-infrared spectroscopic sensing system for online milk quality assessment in a milking robot. Computers and Electronics in Agriculture, 63(1): 22 - 27. DOI: 10.1016/j.compag.2008.01.006 Go to original source...
  36. KNEGSEL VAN, A. T. M., DRIFT VAN DER, S. G. A., HORNEMAN, M., ROOS DE, A. P. V., KEMP, B. and GRAAT, G. A. M. 2010. Ketone body concentration in milk determined by Fourier transform infrared spectroscopy: Value for the detection of hyperketonemia in dairy cows. Journal of Dairy Science, 93: 3065 - 3069. DOI: 10.3168/jds.2009-2847 Go to original source...
  37. KUKAČKOVÁ, O., ČURDA, L. and JINDŘICH, J. 2000. Multivariate calibration of raw cow milk using NIR spectroscopy. Czech Journal of Food Science, 18(1): 1 - 4.
  38. LERAY, O. 1993. CECALAIT: an organization to support analytical quality assurance in dairy laboratories. In: Proceedings of an International Analytical Quality Assurance and Good Laboratory Practice in Dairy Laboratories. Sonthofen / Germany, 349-360.
  39. LERAY, O. 2007. Reference and calibration system for routine milk testing - advantages / disadvantages, choice criteria. In: 3rd ICAR reference laboratory network meeting - Kuopio, Finland. Breeding, production recording, health and the evaluation of farm animals. EAAP publication. 311 - 317.
  40. LERAY, O. 2009. Update on ICAR reference laboratory network. Identification, breeding, production, health and recording of farm animals. In: Proc. of 36th ICAR biennial session. Niagara Falls, USA, 291 - 294.
  41. LUKAS, J. M., HAWKINS, D. M., KINSEL, M. L. and RENEAU, J. K. 2005. Bulk tank somatic cell counts analyzed by statistical process control tools to identify and monitor subclinical mastitis incidence. Journal of Dairy Science, 88: 3944. DOI: 10.3168/jds.S0022-0302(05)73080-0 Go to original source...
  42. MANZENREITER, H., FÜRST-WALTL, B., EGGER-DANNER, C. and ZOLLITSCH, W. 2013. Zur Eignung des Gehalts an Milchinhaltsstoffen als Ketoseindikator. In: LFZ Raumberg-Gumpenstein des BMLFUW, 40. Viehwirtschaftliche Fachtagung - Ökonomik, Proteinversorgung, Grundfutterqualität, Grundfutterkonservierung, Mutterkuhhaltung, Forschungsergebnisse LFZ. 9 - 19.
  43. PARK, Y. K., KOO, H. C., KIM, S. H., HWANG, S. Y., JUNG, W. K., KIM, J. M., SHIN, S., KIM, R. T. and PARK, Y. H. 2007. The analysis of milk components and pathogenic bacteria isolated from bovine raw milk in Korea. Journal of Dairy Science, 90: 5405. DOI: 10.3168/jds.2007-0282 Go to original source...
  44. PETERSSON WOLFE, CH. 2013. Practical ways to control mastitis. [Online]. Available at: https://www.vtdairy.dasc.vt.edu/pub-pres/dairy-conf/2012-2013/2013-cspw-adc.pdf.
  45. PYORÄLÄ, S. 2003. Indicators of inflammation in the diagnosis of mastitis. Veterinary Research, 34: 565. DOI: 10.1051/vetres:2003026 Go to original source...
  46. REIST, M., VON EUW, D., TSCHUEMPERLIN, K., LEUENBERGER, L., CHILLIARD, Y., HAMMON, H. M., MOREL, C., PHILIPONA, C., ZBINDEN, Y., KUENZI, N. and BLUM, J. W. 2002. Estimation of energy balance at the individual and herd level using blood and milk traits in high-yielding dairy cows. Journal of Dairy Science, 85: 3314 - 3327. DOI: 10.3168/jds.S0022-0302(02)74420-2 Go to original source...
  47. RODENBURG, J. 2011. In-line fat and protein testing has arrived....... so goodbye DHI? [Online]. Available at: http://www.dairylogix.com/11-%20In%20Line%20Milk%20Testing%20%20%20GoodByeDHI.pdf.
  48. ŠUSTOVÁ, K., RŮŽIČKOVÁ, J. and KUCHTÍK, J. 2007. Application of FT near spectroscopy for determination of true protein and casein in milk. Czech Journal of Animal Science, 52(9): 284 - 291. DOI: 10.17221/2264-CJAS Go to original source...
  49. TSENKOVA, R., ATANASSOVA, S., ITOH, K., OZAKI, Y. and TOYODA, K. 2000. Near infrared spectroscopy for biomonitoring: Cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers. Journal of Animal Science, 78: 515 - 522. DOI: 10.2527/2000.783515x Go to original source...
  50. TSENKOVA, R., ATANASSOVA, S., TOYODA, K., OZAKI, Y., ITOH, K., and FEARN, T. 1999. Near-infrared spectroscopy for dairy management: Measurement of unhomogenized milk composition. Journal of Dairy Science, 82: 2344 - 2351. DOI: 10.3168/jds.S0022-0302(99)75484-6 Go to original source...
  51. VINES, D. T., JENNY, B. F., WRIGHT, R. E. and GRIMES, L. W. 1986: Variation in milk fat, protein and somatic cell count from four dairy herd improvement laboratories. Journal of Dairy Science, 69: 2219 - 2223. DOI: 10.3168/jds.S0022-0302(86)80657-9 Go to original source...
  52. WOOD, R. 1994. Proficiency testing and accreditation of food analysis Laboratories. In: 1. Conference on practical application of European legislation on foodstuffs. Bled, Slovenia: 55 - 65.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.