Acta Univ. Agric. Silvic. Mendelianae Brun. 2016, 64(1), 129-134 | DOI: 10.11118/actaun201664010129

Guanicid and PHMG Toxicity Tests on Aquatic Organisms

Eva Poštulková, Radovan Kopp
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

The emergence and development of new algicidal products is caused by the ever increasing popularity of garden ponds as well as the use of these products in the fisheries sector, especially for disposal of cyanobacteria and algae. Most frequent means of combating cyanobacteria and algae are applications of algicidal substances. Newly developed algaecides include Guanicid and polyhexamethylene guanidine hydrochloride (PHMG). The aim of the study was to identify toxic effects of Guanicid and PHMG on zebrafish (Danio rerio) and green algae (Desmodesmus communis). We determined the acute toxicity in fish according to ČSN EN ISO 7346-1, and conducted the freshwater algae growth inhibition test according to ČSN ISO 8692 methodology. For inhibition tests with green algae we chose Guanicid and PHMG concentrations of 0.001, 0.005, and 0.010 ml/L. For fish short-term acute toxicity tests we chose Guanicid concentrations of 0.010, 0.050, 0.150, 0.200, 0.250, and 0.300 ml/L and PHMG concentrations of 0.010, 0.025, 0.050, 0.075, 0.100, and 0.125 ml/L. In case of zebrafish (Danio rerio), the LC50 value for Guanicid is 0.086 ml/L, while the LC50 value for PHMG is 0.043 ml/L. Effects of Guanicid on inhibition of green algae (Desmodesmus communis) appear highly significant (p < 0.010) at a concentration of 0.010 ml/L. For PHMG, these effects are highly significant (p < 0.001) at concentrations of 0.005 and 0.010 ml/L in 48 hours.

Keywords: algaecide, concentration, Desmodesmus communis, green algae, LC50, toxicology test, zebrafish (Danio rerio)
Grants and funding:

This study was supported by the project No. IP 6/2014 of the Internal Grant Agency of the Faculty of Agronomy of MENDELU in Brno, and the grant project NAZV (QJ1210013).

Prepublished online: February 29, 2016; Published: April 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Poštulková, E., & Kopp, R. (2016). Guanicid and PHMG Toxicity Tests on Aquatic Organisms. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis64(1), 129-134. doi: 10.11118/actaun201664010129
Download citation

References

  1. ČNI. 1999a. ČSN ISO 10260. Jakost vod - Měření biochemických ukazatelů, Spektrofotometrické stanovení koncentrace chlorofylu-a. Praha: Český normalizační institut.
  2. ČNI. 1999b. ČSN EN ISO 7346-1. Jakost vod - Stanovení akutní letální toxicity látek pro sladkovodní ryby [Branchydanio rerio Hamilton - Buchanan (Teleostei, Cyprinidae)] Část 1: Statická metoda. Praha: Český normalizační institut.
  3. ČNI. 2005. ČSN EN ISO 8692. Jakost vod - Zkouška inhibice růstu sladkovodních řas. Praha: Český normalizační institut.
  4. DOLEŽALOVÁ, P., MÁCOVÁ, S., PIŠTĚKOVÁ, V., SVOBODOVÁ, Z., BEDÁŇOVÁ, I. and VOSLÁŘOVÁ, E. 2008. Comparison of the sensitivity of Danio rerio and Poecilia reticulata to silver nitrate in short-term tests. Interdisciplinary toxikology, 1(2): 200-202. DOI: 10.2478/v10102-010-0040-0 Go to original source...
  5. DRÁBKOVÁ, M., MARŠÁLEK, B. 2004. Přehled možností principů omezování masového rozvoje sinic. In: Cyanobakterie: Biologie, toxikologie a možnosti nápravných opatření. Brno, 21 January. Brno: Vodní zdroje EKOMONITOR spol. s r. o., 113-142.
  6. FARID, F. S. and MEHANA, E. S. E. D. 2015. Pesticides Toxicity in Fish with Particular Reference to Insecticides. Asian Journal of Agriculture and Food Sciences, 3(1): 40-60 Go to original source...
  7. HANSON, M. J. and STEFAN, H. G. 1984. Side-effects of 58 Years of Copper-Sulfate Treatment of the Fairmont Lakes, Minnesota. Journal of the American Water Resources Association, 20(6): 889-900. DOI: 10.1111/j.1752-1688.1984.tb04797.x Go to original source...
  8. JANČULA, D., SLOVÁČKOVÁ, H., MARŠÁLEK, B. 2008. Možnosti ošetření vodního sloupce nádrží chemickými prostředky. In: Cyanobakterie: invazivní sinice, nové cyanotoxiny a trendy v technologiích. Brno, 2-3 April. Brno: Botanický ústav AV ČR, 78-83.
  9. KOČÍ, V. 2006. Význam testů toxicity pro hodnocení vlivu látek na životní prostředí. Chemické listy, 100(10): 882-888.
  10. LAMMER, E., CARR, G. J., WENDLER, K., RAWLINGS, J. M., BELANGER, S. E., and BRAUNBECK, T. 2009. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(2): 196-209. Go to original source...
  11. LeBLANC, G. A., MASTONE, J. D., PARADICE, A. P., WILSON, B. F., LOCKHART, Jr. H. B. and ROBILLARD, K. A. 1984. The influence of speciation on the toxicity of silver to fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 3(1): 37-46. DOI: 10.1897/1552-8618(1984)3[37:TIOSOT]2.0.CO;2 Go to original source...
  12. MÍČA, P. 2009. Bezpečnostní list. [Online]. Available at: http://obchod.bazenovachemie.cz/files/Bezpecnostni_list_Guanicid.pdf. [Accessed: 2014, October 29].
  13. NOZA S. R. O. 2014. Charakteristika PHMG. [Online]. Available at: http://nozasro.cz/charakteristika-phmg/. [Accessed: 2014, September 16].
  14. OLIVEIRA, E. C., LOPES, R. M. and PAUMGARTTEN, F. J. R. 2004. Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere, 56(4): 369-374. Go to original source...
  15. SCHOLZ, S., FISCHER, S., GÜNDEL, U., KÜSTER, E., LUCKENBACH, T. and VOLKER, D. 2008. The zebrafish embryo model in environmental risk assessment-applications beyond acute toxicity testing. Environmental science and pollution research, 15(5): 394-404. DOI: 10.1007/s11356-008-0018-z Go to original source...
  16. SVOBODOVÁ, Z., FAINA, R. and VYKUSOVÁ, B. 1985. Použití přípravku Kuprikol 50 v rybářství. Vodňany: Výzkumný ústav rybářský a hydrobiologický.
  17. VANĚK, T. 2012. Likvidace sinic a řas ekologicky šetrným algicidem. Diplomová práce. Brno: Mendelova univerzita v Brně.
  18. XENOPOULOS, M. A. and BIRD, D. F. 1997. Effect of acute exposure to hydrogen peroxide on the production of phytoplankton and bacterioplankton in a mesohumic lake. Photochemistry and photobiology, 66(4): 471-478. DOI: 10.1111/j.1751-1097.1997.tb03175.x Go to original source...
  19. ZHANG, L. J., YING, G. G., CHEN, F., ZHAO, J. L., WANG, L., FANG, Y. X. 2012. Development and application of whole sediment toxicity est using immobilized freshwater microalgae Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry, 13(2): 377-386. DOI: 10.1002/etc.734 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.