Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(6), 1969-1977 | DOI: 10.11118/actaun201563061969

Application of Performance Ratios in Portfolio Optimization

Aleš Kresta
Department of Finance, Faculty of Economics, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic

The cornerstone of modern portfolio theory was established by pioneer work of Harry Markowitz. Based on his mean-variance framework, Sharpe formulated his well-known Sharpe ratio aiming to measure the performance of mutual funds. The contemporary development in computer's computational power allowed to apply more complex performance ratios, which take into account also higher moments of return probability distribution. Although these ratios were proposed to help the investors to improve the results of portfolio optimization, we empirically demonstrated in our paper that this may not necessarily be true. On the historical dataset of DJIA components we empirically showed that both Sharpe ratio and MAD ratio outperformed Rachev ratio. However, for Rachev ratio we assumed only one level of parameters value. Different set-ups of parameters may provide different results and thus further analysis is certainly required.

Keywords: portfolio optimization, Sharpe ratio, mean absolute deviation ratio, Rachev ratio, efficient market hypothesis, time series modelling, GARCH model, copula function
Grants and funding:

The paper was written with the support of Operational Programme Education for Competitiveness - project no. CZ.1.07/2.3.00/20.0296 and GA ČR (Czech Science Foundation - Grantová Agentura České Republiky) under the project No. 13-18300P. All the support is greatly acknowledged and appreciated.

Prepublished online: December 26, 2015; Published: January 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kresta, A. (2015). Application of Performance Ratios in Portfolio Optimization. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(6), 1969-1977. doi: 10.11118/actaun201563061969
Download citation

References

  1. ARTZNER, P., DELBAEN, F., EBER, J. M. et al. 1999. Coherent measures of risk. Mathematical Finance, 9(3): 203-228. DOI: 10.1111/1467-9965.00068 Go to original source...
  2. BIGLOVA, A., ORTOBELLI, S., RACHEV, S. T. et al. 2004. Different approaches to risk estimation in portfolio theory. The Journal of Portfolio Management, 31(1): 103-112. DOI: 10.3905/jpm.2004.443328 Go to original source...
  3. BOLLERSLEV, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3): 307-327. DOI: 10.1016/0304-4076(86)90063-1 Go to original source...
  4. CONT, R. 2001. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1(2): 223-236. DOI: 10.1080/713665670 Go to original source...
  5. ENGLE, R. F. 1982. Auto-regressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4): 987-1007. DOI: 10.2307/1912773 Go to original source...
  6. FARINELLI, S., FERREIRA, M., ROSSELLO, D. et al. 2008. Beyond Sharpe ratio: Optimal asset allocation using different performance ratios. Journal of Banking & Finance, 32(10): 2057-2063. DOI: 10.1016/j.jbankfin.2007.12.026 Go to original source...
  7. GIACOMETTI, R., ORTOBELLI, S. and TICHÝ, T. 2015. Portfolio Selection with Uncertainty Measures Consistent with Additive Shifts. Prague Economic Papers, 24(1): 3-16. DOI: 10.18267/j.pep.497 Go to original source...
  8. HUANG, J. J., LEE, K. J., LIANG, H. et al. 2009. Estimating value at risk of portfolio by conditional copula-GARCH method. Insurance: Mathematics and Economics, 45(3): 315-324. Go to original source...
  9. CHERUBINI, U., LUCIANO, E. and VECCHIATO, W. 2004. Copula Methods in Finance. Chichester: Wiley. Go to original source...
  10. CHERUBINI, U., MULINACCI, S., GOBBI, F. et al. 2011. Dynamic Copula Methods in Finance. Chichester: Wiley. Go to original source...
  11. KLEPÁČ, V. and HAMPEL, D. 2015. Assessing Efficiency of D-Vine Copula ARMA-GARCH Method in Value at Risk Forecasting: Evidence from PSE Listed Companies. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(4): 1287-1295. DOI: 10.11118/actaun201563041287 Go to original source...
  12. KONNO, H. and YAMAZAKI, H. 1991. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37(5): 519-531. DOI: 10.1287/mnsc.37.5.519 Go to original source...
  13. KRESTA, A. 2015a. Financial Engineering in Matlab: Selected Approaches and Algorithms. Ostrava: VŠB-TU Ostrava.
  14. KRESTA, A. 2015b. Application of GARCH-Copula Model in Portfolio Optimization. Financial Assets and Investing, 6(2): 7-20. DOI: 10.5817/FAI2015-2-1 Go to original source...
  15. KUBÁT, M. and GÓRECKI, J. 2015. An experimental comparison of Value at Risk estimates based on elliptical and hierarchical Archimedean copulas. In: 33rd International Conference Mathematical Methods in Economics: Conference Proceedings. Cheb, 9-11 September. Plzeň: University of West Bohemia, 419-424.
  16. LO, A. W. 2004. The Adaptive Markets Hypothesis. The Journal of Portfolio Management, 30(5), 15-29. DOI: 10.3905/jpm.2004.442611 Go to original source...
  17. LO, A. W. and MACKINLAY, A. C. 2011. A Non-Random Walk Down Wall Street. New Jersey: Princeton University Press. Go to original source...
  18. LO, A. W., MAMAYSKY, H. and WANG, J. 2000. Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. The Journal of Finance, 55(4): 1705-1770. DOI: 10.1111/0022-1082.00265 Go to original source...
  19. MARKOWITZ, H. M. 1952. Portfolio selection. Journal of Finance, 7(1): 77-91. Go to original source...
  20. NELSEN, R. B. 1997. Dependence and order in families of Archimedean copulas. Journal of Multivariate Analysis, 60(1): 111-122. DOI: 10.1006/jmva.1996.1646 Go to original source...
  21. RANK, J. 2006. Copulas: From Theory to Application in Finance. London: Risk Books.
  22. ROCKAFELLAR, R. T. and URYASEV, S. 2002. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7): 1443-1471. DOI: 10.1016/S0378-4266(02)00271-6 Go to original source...
  23. SAMUELSON, P. A. 1965. Proof that properly anticipated prices fluctuate randomly. Industrial Management Review, 6(2): 41-49.
  24. SHALIT, H. and YITZHAKI, S. 1984. Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets. The Journal of Finance, 39(5): 1449-1468. DOI: 10.1111/j.1540-6261.1984.tb04917.x Go to original source...
  25. SHARPE, W. F. 1966. Mutual Fund Performance. The Journal of Business, 39(1): 119-138. DOI: 10.1086/294846 Go to original source...
  26. SHARPE, W. F. 1994. The Sharpe Ratio. The Journal of Portfolio Management, 21(1): 49-58. DOI: 10.3905/jpm.1994.409501 Go to original source...
  27. SKLAR, A. 1959. Fonctions de repartition ŕ n dimensions et leurs marges. Publications de l'Institut de statistique de l'Université de Paris, 8: 229-231.
  28. SKLAR, A. 1973. Random variables, joint distribution functions, and copulas. Kybernetika, 9(6): 449-460.
  29. ŠIRŮČEK, M. and KŘEN, L. 2015. Application of Markowitz Portfolio Theory by Building Optimal Portfolio on the US Stock Market. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(4): 1375-1386. DOI: 10.11118/actaun201563041375 Go to original source...
  30. WANG, Z. R., CHEN, X. H., JIN, Y. B. et al. 2010. Estimating risk of foreign exchange portfolio: Using VaR and CVaR based on GARCH-EVT-Copula model. Physica A: Statistical Mechanics and its Applications, 389(21): 4918-4928. DOI: 10.1016/j.physa.2010.07.012 Go to original source...
  31. YOUNG, M. R. 1998. A minimax portfolio selection rule with linear programming solution. Management Science, 44(5): 673-683. DOI: 10.1287/mnsc.44.5.673 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.