Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(4), 1417-1426 | DOI: 10.11118/actaun201563041417

Soil Scientific Research Methods Used in Archaeology - Promising Soil Biochemistry: a Mini-review

Valerie Vranová, Theodore Danso Marfo, Klement Rejšek
Department of Geology and Soil Science, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

This work seeks to review soil scientific methods that have been used and are still being used in archaeology. This review paper aims at emphasising the importance of soil science practice to archaeology thus adding a scientific analytical nature to the cultural nature of archaeology. Common methods (physical, chemical and biochemical) used to analyse archaeological soils and artefacts is touched on and their strengths and shortcomings duly noted to become the base for future research. Furthermore, the authors made emphasis on distinctive excavating/sampling methods, biochemical analyses focused on distinctive features of plough-land and soil organic matter mineralization, Counter Immunoelectrophoresis (CEIP) method by the presence of proteins testing, carbon analyses such as carbon-14 dating techniques, soil phosphorus studies and geochemical analyses of hematite Fe2O3 and cinnabaryte HgS contents. It is obvious that, the future of archaeology is in the soil because the soil harbours information of the past hence the synergy between soil and archaeological research has to be strengthened and archaeology made a prime agenda by soil scientists by expanding the analyses scope of total phosphorus extraction and giving attention to soil magnetism.

Keywords: soil properties, soil biochemistry, phosphorus starch, lipid, protein
Grants and funding:

This study was supported by the Grant Agency of the Czech Republic (Grant No. GA15-02453S).

Prepublished online: September 2, 2015; Published: September 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vranová, V., Danso Marfo, T., & Rejšek, K. (2015). Soil Scientific Research Methods Used in Archaeology - Promising Soil Biochemistry: a Mini-review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(4), 1417-1426. doi: 10.11118/actaun201563041417
Download citation

References

  1. AITKEN, M. J. 2003. Radiocarbon dating. In: Archaeological Method and Theory. ELLIS, L. (ed.), pp.505-508. New York: Garland Publishing.
  2. BADENHUIZEN, N. 1965. Occurrence and development of starch in plants. In: Starch: Chemistry and Technology. WHISTLER, R. L. and PASCHALL, E. F. (eds), vol. 1, pp.65-100. London, New York: Academic Press.
  3. BAKKEVIG, S. 1980. Phosphate analysis in archaeology - problems and recent progress. Nor. Archaeol. Rev., 13(2): 73-100. DOI: 10.1080/00293652.1980.9965334 Go to original source...
  4. BALESDENT, J., WAGNER, G. H. and MARIOTTI, A. 1988. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. SSSAJ, 52: 118-124. DOI: 10.2136/sssaj1988.03615995005200010021x Go to original source...
  5. BALL, B. C., CHESHIRE, M. V., ROBERTSON, E. A. G. and HUNTER, E. A. 1996. Carbohydrate composition in relation to structural stability, compactibility and plasticity of two soils in a long-term experiment. Soil Till. Res., 39(3-4): 143-160. DOI: 10.1016/S0167-1987(96)01067-7 Go to original source...
  6. BARTON, H. 2007. Starch residues on museum artefacts: implications for determining tool use. J. Archaeol. Sci., 34(10): 1752-1762. DOI: 10.1016/j.jas.2007.01.007 Go to original source...
  7. BIRK, J. J., TEIXEIRA, W. G., NEVES, E. G. et al. 2011. Faeces deposition on Amazonian Anthrosols as assessed from 5β-stanols. J. Archaeol. Sci., 38(6): 1209-1220. DOI: 10.1016/j.jas.2010.12.015 Go to original source...
  8. BLUNDELL, A., DEARING, J. A., BOYLE, J. F. et al. 2009. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth Sci. Rev., 95(3): 158-188. DOI: 10.1016/j.earscirev.2009.05.001 Go to original source...
  9. BOARDMAN, J. and POESEN, J. 2006. Soil Erosion in Europe. In: Soil erosion in Europe: major processes, causes and consequences. J., BOARDMAN and POESEN, J. (eds.), Chapter 36. pp.477-487. John Wiley & Sons, Ltd. [Online]. Available at: http://onlinelibrary.wiley.com/book/10.1002/0470859202. [Accessed: 26 January 2015]. Go to original source...
  10. BOUYOUCOS, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agron. J., 54(5): 464-465. DOI: 10.2134/agronj1962.00021962005400050028x Go to original source...
  11. BRAY, R. H. 1929. A field test for available phosphorus in soils. 1st edition. Bulletin No. 337. Illinois, Urbana.
  12. BRIGGS, C. S. 2005. C. C. Rafn, J. J. A. Worsaae, Archaeology, History and Danish national identity in the Schleswig-Holstein question. Bull. Hist. Archaeol., 15(2): 4-25. DOI: 10.5334/bha.15202 Go to original source...
  13. BROWN, A. G. 1997. Alluvial geoarchaeology: floodplain archaeology and environmental change. Cambridge, New York: Cambridge University Press. Go to original source...
  14. BUTZER, K. W. 1971. Environment and archeology. An ecological approach to prehistory. Chicago, Illinois: Aldine Publ. Co.
  15. BUTZER, K. W. 1980. Adaptation to global environmental change. Prof. Geogr., 32(3): 269-238. DOI: 10.1111/j.0033-0124.1980.00269.x Go to original source...
  16. CARR, C. 1982. Handbook on soil resistivity surveying: Interpretation of data from earthen archeological sites. Evanston, Ill.: Center For American Archeology Press.
  17. CHAO, L., XUDONG, Z., BALSER, T. C. 2007. Net microbial amino sugar accumulation process in soil as influenced by different plant material inputs. Biol. Fertil. Soils, 44(1): 1-7. Go to original source...
  18. CHESHIRE, M. V. 1977. Origins and stability of soil polysaccharide. J. Soil Sci., 28(1): 1-10. DOI: 10.1111/j.1365-2389.1977.tb02290.x Go to original source...
  19. CHILD, A. M. 1995. Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. J. Archaeol. Sci., 22(2): 165-174. DOI: 10.1006/jasc.1995.0018 Go to original source...
  20. CONWAY, J. 1983. An investigation of soil phosphorus distribution within occupation deposits from a Romano-British hut group. J. Archaeol. Sci., 10(2): 117-128. DOI: 10.1016/0305-4403(83)90045-6 Go to original source...
  21. COOK, S. F. and HEIZER, R. F. 1965. The quantitative approach to the relation between population and settlement size. Archaeological Survey Reports Berkeley, Ca: University of California.
  22. COURTY, M.-A., GOLDBERG, P. and MACPHAIL, R. 1990. Soils and micromorphology in archaeology. Cambridge: Cambridge University Press. Go to original source...
  23. CRAIG, O. E. and COLLINS, M. J. 2000. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. J. Immunol. Methods, 236(1-2): 89-97. DOI: 10.1016/S0022-1759(99)00242-2 Go to original source...
  24. CRAIG, O. E. and COLLINS, M. J. 2002. The removal of protein residues from mineral surfaces: Implications for residue analysis of archaeological materials. J. Archaeol. Sci., 29(10): 1077-1082. DOI: 10.1006/jasc.2001.0757 Go to original source...
  25. D'ANJOU, R. M., BRADLEY, R. S., BALASCIO, L. N. et al. 2012. Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. PNAS, 109(50): 20332-20337. DOI: 10.1073/pnas.1212730109 Go to original source...
  26. DANIEL, G. E. 1950. A hundred years of archaeology. Gerald Duckworth & Co. Ltd. Go to original source...
  27. DICK, R. P., SANDOR, J. A. and EASH, N. S. 1994. Soil enzyme-activities after 1500 years of tenace agri-culture in the Coica Valley, Perú. Agric. Ecosyst.Environ., 50(2): 123-131. DOI: 10.1016/0167-8809(94)90131-7 Go to original source...
  28. DIETZ, E. F. 1957. Phosphorus accumulation in soil of an Indian habitation site. American Antiquity, 22(4): 405-409. DOI: 10.2307/276142 Go to original source...
  29. ECKMEIER, E. and WIESENBERG, G. L. 2009. Short chain alkanes in ancient soil are useful molecular markers for prehistoric biomass burning. J. Archaeol. Sci., 36(7): 1590-1596. DOI: 10.1016/j.jas.2009.03.021 Go to original source...
  30. ECKMEIER, E. and GERLACH, R. 2012. Characterization of Archaeological Soils and Sediments Using VIS Spectroscopy. eTopoi. J. Ancient Studies, Special Volume 3: 285-290. [Online]. Available at: http://journal.topoi.org/index.php/etopoi/article/view/128/148. [Accessed: 26 January 2015].
  31. EIDT, R. C. 1973. A rapid chemical field test for archaeological site surveying. Am. Antiq., 38(2): 206-210. DOI: 10.2307/279368 Go to original source...
  32. ERNÉE, M. and MAJER, A. 2009. Uniformita, či rozmanitost pohřebního ritu? Interpretace výsledků fosfátové půdní analýzy na pohřebišti únětické kultury v Praze 9 - Miškovicích. Archeologické rozhledy, 61: 493-508.
  33. EVERSHED, R. P. 1993. Biomolecular archaeology and lipids. World Archaeol., 25(1): 74-93. DOI: 10.1080/00438243.1993.9980229 Go to original source...
  34. EVERSHED, R. P. 1997. 5β-Stigmastanol and related 5β-stanols as biomarkers of manuring: analysis of modern experimental material and assessment of the archaeological potential. J. Archaeol. Sci., 24(6): 485-495. DOI: 10.1006/jasc.1996.0132 Go to original source...
  35. EVERSHED, R. P. 2008. Organic residue analysis in archaelogy: The archaeological biomarker revolution. Archaeometry, 50(6): 895-924. DOI: 10.1111/j.1475-4754.2008.00446.x Go to original source...
  36. FAHY, E., SUBRAMANIAM, S., BROWN, H. A. et al. 2005. A comprehensive classification system for lipids. J. Lipid Res., 46(5): 839-862. DOI: 10.1194/jlr.E400004-JLR200 Go to original source...
  37. FORMÁNEK, P., REJŠEK, K., JANOUŠ, D. et al. 2006. Casein-protease, urease and acid phosphomonoesterase activities in moderately mown and abandoned mountain meadow soil. Beskydy Bull., 2006(19): 53-58.
  38. GORDON, C. C. and BUIKSTRA J. E. 1981. Soil, pH, bone preservation, and sampling bias at mortuary sites. Am. Antiq., 46(3): 566-571. DOI: 10.2307/280601 Go to original source...
  39. HAMMES, K., SCHMIDT, M. W. I., SMERNIK, R. J. et al. 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem. Cy., 21(3): GB3016. doi:10.1029/2006GB002914. DOI: 10.1029/2006GB002914 Go to original source...
  40. HASLAM, M. 2004. The decomposition of starch grains in soils: implications for archaeological residue analyses. J. Archaeol. Sci., 31(12): 1715-1734. DOI: 10.1016/j.jas.2004.05.006 Go to original source...
  41. HEJCMAN, M., HEJCMANOVÁ, P., HLÁSNÁ-ČEPKOVÁ, P. et al. 2013. Environmental archaeology at the Czech University of Life Sciences Prague - An aplication of new methods for interdisciplinary research. Interdiscip. Archaeol., 4(2): 223-231. Go to original source...
  42. HJULSTRÖM, B. and ISAKSSON, S. 2009. Identification of activity area signatures in a reconstructed Iron Age house by combining element and lipid analyses of sediments. J. Archaeol. Sci., 36(1): 174-183. DOI: 10.1016/j.jas.2008.08.005 Go to original source...
  43. HOLLIDAY, V. T. 2004. Soils in archaeological research. Oxford: Oxford University Press. Go to original source...
  44. HOLLIDAY, V. T. and GARTNER, W. G. 2007. Methods of soil P analysis in archaeology. J. Archaeol. Sci., 34(2): 301-333. DOI: 10.1016/j.jas.2006.05.004 Go to original source...
  45. HRABOVSKA, B., HAMMEROVA, A., JANDAK, J. et al. 2014. Soil aggregate stability and soil organic matter on chernozems of South Moravia. In: POLÁK, O., CERKAL, R. and ŠKARPA, P. MendelNet 2014 - Proceedings of International PhD Students Conference. Brno, Czech Republic: Mendel University in Brno, pp.260-265.
  46. JONES, A. and MACGREGOR, G. 2002. Colouring the past: the significance of colour in archaeological research. Berg: Bloomsbury Academic.
  47. KLUTE, A. 1986. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9. 2nd edition. Madison, WI: American Society of Agronomy/Soil Science Society of America.
  48. LAUER, F., PÄTZOLD, S., GERLACH, R. et al. 2013. Phosphorus status in archaeological arable topsoil relicts. Is it possible to reconstruct conditions for prehistoric agriculture in Germany? Geoderma, 207-208: 111-120. DOI: 10.1016/j.geoderma.2013.05.005 Go to original source...
  49. LAUER, F., PROST, K., GERLACH, R. et al. 2014. Organic fertilization and sufficient nutrient status in prehistoric agriculture? Indications from Multi-Proxy Analyses of archaeological topsoil relicts. PloS ONE 9(9): e106244. DOI: 10.1371/journal.pone.0106244 Go to original source...
  50. LENĎÁKOVÁ, Z. and GRÍGELOVÁ, A. 2012. Phosphate analysis of sediment from the archaeological site Olomouc-Nemilany. Geol. Výzk. Mor. Slez., 19(1-2). [Online]. Available at: http://www.sci.muni.cz/gap/casop/r2012/026_lendakova12.pdf. [Accessed: 21 May 2015].
  51. LEONARDI, G., MIGLAVACCA, M. and NARDI, S. 1999. Soil phosphorus analysis as an integrative tool for recognizing buried ancient ploughsoils. J. Archaeol. Sci., 26(4): 343-352. DOI: 10.1006/jasc.1998.0329 Go to original source...
  52. MACKNEY, D. 1976. Soil science and archaeology: Susan Limbrey. 1975. pp. xv +384. London: Academic Press. J. Archaeol. Sci., 3(2): 189-190. DOI: 10.1016/0305-4403(76)90089-3 Go to original source...
  53. MCGLADE, J. and VAN DER LEEUW, S. E. (eds.). 1997. Time, process and structured transformation in archaeology. 1st edition. London and New York: Routledge.
  54. MENON, R., HAMMOND, L. L. and SISSINGH, H. A. 1989. Determination of plant-available phosphorus by the iron hydroxide-impregnated filter paper (Pi) soil test. SSSAJ, 53(1): 110-115. DOI: 10.2136/sssaj1989.03615995005300010020x Go to original source...
  55. MOORE, I. D., GESSLER, P. E., NIELSEN, G. A. et al. 1993. Soil attribute prediction using terrain analysis. SSSAJ, 57(2): 443-452. DOI: 10.2136/sssaj1993.03615995005700020026x Go to original source...
  56. OLSEN, S. L. 1988. Scanning electron microscopy in archaeology. 1st edition. Oxford: British Archaeological Reports. Go to original source...
  57. PARNELL, J. J., TERRY, R. E. and NELSON, Z. 2002. Soil chemical analysis applied as an interpretive tool for ancient human activities in Piedras Negras, Guatemala. J. Archaeol. Sci., 29(4): 379-404. DOI: 10.1006/jasc.2002.0735 Go to original source...
  58. PAUL, E. A. 2014. Soil microbiology, ecology and biochemistry. 4th edition. Academic PRESS.
  59. PROKEŠ, L., PETŘÍK, J., BERAN, V. et al. 2013. Možnosti statistické a prostorové analýzy hodnot půdních fosfátů na příkladě sekundárně narušených hrobů z Hodonic a Kyjova. Archeologické prospekce a nedestruktivní archeologie v Jihočeském kraji, kraji Vysočina, Jihomoravském kraji a v Dolním Rakousku. Sborník z konference, Jindřichův Hradec 6. 3.-7. 3. 2013, 229-236.
  60. PROUDFOOT, B. 1976. The analysis and interpretation of soil phosphorus in archaeological contexts. In: DAVIDSON, D. A. and SHAKLEY, M. L. (eds), Geoarchaeology. London: Duckworth, 93-113.
  61. PROVAN, D. M. 1971. Soil phosphate analysis as a tool in archaeology. Nor. Archaeol. Rev., 4(1): 37-50. DOI: 10.1080/00293652.1971.9965134 Go to original source...
  62. RAKHUBA, D., NOVIK, G. and DEY, E. S. 2009. Application of supercritical carbon dioxide (scCO2) for the extraction of glycolipids from Lactobacillus plantarum B-01. J. Supercrit. Fluids, 49(1): 45-51. DOI: 10.1016/j.supflu.2008.11.016 Go to original source...
  63. RAPP, G. R. and HILL, C. L. 2006. Geoarchaeology: The earth-science approach to archaeological interpretation. 2nd edition. New Haven, Ct: Yale University Press.
  64. REJŠEK, K., VRANOVÁ, V., PAVELKA, M. et al. 2012. Acid phosphomonoesterase (E.C. 3.1.3.2) location in soil. J. Plant Nutr. Soil Sci., 175(2): 196-211. DOI: 10.1002/jpln.201000139 Go to original source...
  65. REBMANN, A. J., KOENIG, M., DAVID, E. and SORG, M. H. 2000. Cadaver dog Handbook: forensic training and tactics for the recovery of human remains. Boca Raton, FL: CRC Press.
  66. RETALLACK G. J. 2001. Soils of the Past. An introduction to paleopedology. 2nd edition. Oxford: Blackwell. Go to original source...
  67. REYMAN, J. E. 1992. Rediscovering our past: Essays on the history of American archaeology. Worldwide archaeology series - Vol. 2. 1st edition. Aldershot: Avebury.
  68. RICHARDSON, M. and GAJEWSKI, B. 2003. Archaeological sampling strategies. [Online]. J. Stat. Educ., 11(1). Available at: http://www.amstat.org/publications/JSE/v11n1/richardson.html. [Accessed: 21 May 2015]. Go to original source...
  69. RUTTENBERG, K. C. 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr., 37(7): 1460-1482. DOI: 10.4319/lo.1992.37.7.1460 Go to original source...
  70. RYPKEMA, H. A., LEE, W. E., GALATY, M. L. et al. 2007. Rapid, in-stride soil phosphate measurement in archaeological survey: a new method tested in Loudoun County, Virginia. J. Archaeol. Sci., 34(11): 1859-1867. DOI: 10.1016/j.jas.2007.01.006 Go to original source...
  71. SHANKS, O. C., KORNFELD, M. and HAWK, D. D. 1999. Protein analysis of Bugas-Holding tools: new trends in immunological studies. J. Archaeol. Sci., 26(9): 1183-1191. DOI: 10.1006/jasc.1998.0353 Go to original source...
  72. SHERRATT, A. 1997. Economy and society in prehistoric Europe: Changing perspectives. Edinburgh: Edinburgh University Press. Go to original source...
  73. SCHAETZL, R. and ANDERSON, S. 2005. Soils: Genesis and geomorphology. Cambridge: Cambridge University Press. Go to original source...
  74. SCHLEZINGER, D. R. and HOWES, B. L. 2000. Organic phosphorus and elemental ratios as indicators of prehistoric human occupation. J. Archaeol. Sci., 27(6): 479-492. DOI: 10.1006/jasc.1999.0464 Go to original source...
  75. SCHOENINGER, M. J. 2010. Diet reconstruction and ecology using stable isotope ratios. In: SPENCER, L. C. (ed.), A companion to biological anthropology. Oxford: Blackwell, 445-464. Go to original source...
  76. SINGER, M. J. and FINE, P. 1989. Pedogenic factors affecting magnetic susceptibility of northern California soils. SSSAJ, 53(4): 1119-1127. DOI: 10.2136/sssaj1989.03615995005300040023x Go to original source...
  77. SULLIVAN, K. A. and KEALHOFER, L. 2004. Identifying activity areas in archaeological soils from a colonial Virginia House lot using phytolith analysis and soil chemistry. J. Archaeological Science, 31(12): 1659-1673. DOI: 10.1016/j.jas.2004.04.007 Go to original source...
  78. SUMNER, M. E. 1999. Handbook of soil science. Boca Raton, Florida: CRC Press.
  79. SURABIAN D. A. 2012. Soil characteristics that impact clandestine graves. [Online]. Available at: http://www.forensicmag.com/articles/2012/02/soil-characteristics-impact-clandestine-graves. [Accessed: 10 May 2015].
  80. TAYLOR, R. E. and OFER, B. Y. 2014. Radiocarbon Dating. 2nd edition. Walnut Creek, California: Left Coast Press.
  81. TORRENT, J. and BARRÓN, V. 1993. Laboratory measurement of soil colour: theory and practice. In: BIGHAM, J. M. and CIOLKOSZ, J. E., Soil Colour. 1st edition. SSSA Special Publication Number 31. Madison, Wisconsin: SSSA, Inc., 21-33. Go to original source...
  82. TUREK, J., HADACZ, R., VRANOVÁ, V. et al. 2015. Soil polysaccharides, a biochemistry and dating of the prehistoric occupation in Brandýs nad Labem, Czech Republic. (sent into Geoarchaeology, January 2015).
  83. VRANOVÁ, V., ZAHRADNÍČKOVÁ, H., JANOUŠ, D. et al. 2012. The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps. Plant Soil, 354(1-2): 21-39. DOI: 10.1007/s11104-011-1059-5 Go to original source...
  84. VRANOVÁ, V., REJŠEK, K. and FORMÁNEK, P. 2013a. Aliphatic, cyclic and aromatic organic acids, vitamins and carbohydrates in soil: a review. The Scientific World J., 2013(2013), 1-15. [Online]. Available at: http://www.hindawi.com/journals/tswj/2013/524239/. [Accessed: 26 January 2015]. DOI: 10.1155/2013/524239 Go to original source...
  85. VRANOVÁ, V., REJŠEK, K. and FORMÁNEK, P. 2013b. Proteolytic activity in soil: A review. Appl. Soil Ecol., 70: 23-32. DOI: 10.1016/j.apsoil.2013.04.003 Go to original source...
  86. WATANABE, F. and OLSEN, S. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. SSSAJ, 29(6): 677-678. DOI: 10.2136/sssaj1965.03615995002900060025x Go to original source...
  87. WHITE, R. E. 2013. Principles and practice of soil science: the soil as a natural resource. 4th edition. John Wiley & Sons.
  88. YOHE, M. and GIBBONS, S. 2013. Protein Residue Analysis of Twenty-three Artefacts and Two Soil Samples from Site 7K F-11 the Gray Farm Site in Delaware. Vol. II. In: Archaeology/Historic Preservation. Gray Farm Site DRAFT Phase II and III Excavations on the Murderkill River (Sites 7K-F-11 and 7K-F-169) SR 1 Frederica North Grade Separated Intersection Kent County, Delaware Volume I, Volume II and Volume III Agreement 1416, Task 8. [Online]. Available at: http://www.deldot.gov/archaeology/north_frederica/GrayFarmSite/phaseII_III/pdf/volII/SubConsultantRpt5.pdf. [Accessed: 26 January 2015].

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.