Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(4), 1287-1295 | DOI: 10.11118/actaun201563041287
Assessing Efficiency of D-Vine Copula ARMA-GARCH Method in Value at Risk Forecasting: Evidence from PSE Listed Companies
- Department of Statistics and Operation Analysis, Mendel University in Brno, Zemìdìlská 1, 613 00 Brno, Czech Republic
The article points out the possibilities of using static D-Vine copula ARMA-GARCH model for estimation of 1 day ahead market Value at Risk. For the illustration we use data of the four companies listed on Prague Stock Exchange in range from 2010 to 2014. Vine copula approach allows us to construct high-dimensional copula from both elliptical and Archimedean bivariate copulas, i.e. multivariate probability distribution, created from process innovations. Due to a deeper shortage of existing domestic results or comparison studies with advanced volatility governed VaR forecasts we backtested D-Vine copula ARMA-GARCH model against the VaR rolling out of sample forecast from October 2012 to April 2014 of chosen benchmark models, e.g. multivariate VAR-GO-GARCH, VAR-DCC-GARCH and univariate ARMA-GARCH type models. Common backtesting via Kupiec and Christoffersen procedures offer generalization that technological superiority of model supports accuracy only in case of an univariate modeling - working with non-basic GARCH models and innovations with leptokurtic distributions. Multivariate VAR governed type models and static Copula Vines performed in stated backtesting comparison worse than selected univariate ARMA-GARCH, i.e. it have overestimated the level of actual market risk, probably due to hardly tractable time-varying dependence structure.
Keywords: D-Vine copula, Christoffersen duration test, Kupiec test, Value at Risk, VAR-DCC-GARCH, ARMA-GARCH-GJR
Grants and funding:
The paper was supported by the Internal Grant Agency FBE MENDELU under project: Vývoj stochastických metod pro predikci korporátních bankrotù (No. 36/2014).
Prepublished online: September 2, 2015; Published: September 1, 2015 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- ALLEN, D. E., ASHRAF, M. A., MCALEER et al. 2013. Financial dependence analysis: applications of vine copulas. Statistica Neerlandica, 67(4): 403-435. DOI: 10.1111/stan.12015
Go to original source...
- AAS, K., CZADO, C., FRIGESSI, A. et al. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics & Economics, 44: 182-198.
Go to original source...
- ANGELIDIS, T., BENOS, A. and DEGIANNAKIS, A. S. 2004. The Use of GARCH Models in VaR Estimation. Statistical Methodology, 1(2): 105-128. DOI: 10.1016/j.stamet.2004.08.004
Go to original source...
- BRECHMANN, E. C. and SCHEPSMEIER, U. 2013. Modeling dependence with C- and D-vine copulas: The R-package CDVine. R vignette of the R-package CDVine.
- BAUWENS, L., LAURENT, S. and J. ROMBOUTS. 2006. Multivariate GARCH models: a survey. Journal of Applied Econometrics, 21(1), 79-109. DOI: 10.1002/jae.842
Go to original source...
- GHALANOS, A. 2014a. Multivariate GARCH models. R vignette of the R-package RMGARCH.
- GHALANOS, A. 2014b. Univariate GARCH models. R vignette of the R-package RuGARCH.
- BERG, D. and AAS, K. 2009. Models for construction of higher-dimensional dependence: A comparison study. European Journal of Finance, 15: 639-659. DOI: 10.1080/13518470802697428
Go to original source...
- BOLLERSLEV, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31: 307-327. DOI: 10.1016/0304-4076(86)90063-1
Go to original source...
- BOLLERSLEV, T. 2008. Glossary to ARCH (GARCH). [Online]. SSRN Electronic Journal. Available at: http://www.ssrn.com/abstract=1263250.
Go to original source...
- BOLLERSLEV, T. 1990. Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model. Review of Economics and Statistics, 72: 498-505. DOI: 10.2307/2109358
Go to original source...
- DAJCMAN, S. and KAVKLER, A. 2011. A comparative DCC-GARCH and rolling wavelet correlation analysis of interdependence between the Slovenian and European stock markets. Economic Computation & Economic Cybernetics Studies & Research, 45(4).
- ENGLE, R. F. 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50: 987-1007. DOI: 10.2307/1912773
Go to original source...
- HOFMANN, M. and CZADO, C. 2010. Assessing the VaR of a portfolio using D-vine copula based multivariate GARCH models. Working Paper, Technische Universität München. Zentrum Mathematik.
- CHRISTOFFERSEN, P. and PELLETIER, D. 2004. Backtesting value-at-risk: A duration-based approach. Journal of Financial Econometrics, 2: 84-108. DOI: 10.1093/jjfinec/nbh004
Go to original source...
- JOE, H. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall.
Go to original source...
- KRAUSE, A. 2003. Exploring the limitations of value at risk: how good is it in practice? Journal of Risk Finance, 4(2): 19-28. DOI: 10.1108/eb022958
Go to original source...
- KUPIEC, P. 1995. Techniques for verifying the accuracy or risk measurement models. Journal of Derivatives, 3: 73-84. DOI: 10.3905/jod.1995.407942
Go to original source...
- MIN, A. and CZADO, C. 2010. Bayesian inference for multivariate copulas using pair-copula constructions. Journal of Financial Econometrics, 8(4): 511-546. DOI: 10.1093/jjfinec/nbp031
Go to original source...
- NELSEN, R. B. 1999. An Introduction to Copulas. 2nd edition. New York: Springer.
Go to original source...
- SKLAR, A. 1959. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8: 229-231.
- PATTON, A. J. 2006. Modelling Asymmetric Exchange Rate Dependence. International Economic Review, 47: 527-556. DOI: 10.1111/j.1468-2354.2006.00387.x
Go to original source...
- TSE, Y. K. and TSUI A. K. C. 2002. A Multivariate GARCH Model with Time-Varying Correlatins. Journal of Business and Economic Statistics, 20: 351-362. DOI: 10.1198/073500102288618496
Go to original source...
- VAN DER WEIDE, R. 2002. GO-GARCH: a multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 17: 549-564. DOI: 10.1002/jae.688
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.