Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(4), 1169-1176 | DOI: 10.11118/actaun201563041169

Bearing Capacity of Resistance Spot Welding Under Conditions of Europe, Indonesia

Miroslav Müller, Petr Hrabì
Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences in Prague, Kamıcká 129, 165 00 Praha 6-Suchdol, Czech Republic

A common attribute of production companies is a requirement for a bond creation. A resistance spot welding is a prospective method of bonding. An effect determination of environmental influences on mechanical properties of resistance spot welded bonds is necessary owing to export activities of particular companies. The operating conditions and degradation processes influence were examined in Central Europe, southeast Indonesia and laboratory during 2, 4 and 6 months. From the results the simulation was worked out serving for the prediction of the welded bond bearing capacity for longer time interval. The simulation was verified by the parametric testing during 80 months (Central Europe). The experimental determination of the climatic and geographic different environment influence on the bearing capacity of the resistance spot welded bonds was the aim of the laboratory testing. Considering the globalized society and the export possibilities the knowledge of the experimental study will be used for further testing.

Keywords: bonding, degradation, globalization, prediction, testing
Grants and funding:

Supported by Internal grant agency of Faculty of Engineering, Czech University of Life Sciences in Prague [No. 31140/1312/313133].

Prepublished online: September 2, 2015; Published: September 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Müller, M., & Hrabì, P. (2015). Bearing Capacity of Resistance Spot Welding Under Conditions of Europe, Indonesia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(4), 1169-1176. doi: 10.11118/actaun201563041169
Download citation

References

  1. ABE, Y., KISHIMOTO, M., KATO, T., MORI, K. 2009. Joining of hot-dip coated steel sheets by mechanical clinching. International Journal Material Form, 2(1): 291-294. DOI: 10.1007/s12289-009-0446-4 Go to original source...
  2. AL-SAMHAN, A., DARWISH, S. M. H. 2003. Strength prediction of weld-bonded joints. International Journal of Adhesion and Adhesives, 23: 23-28. DOI: 10.1016/S0143-7496(02)00078-7 Go to original source...
  3. ÈERNİ, M., FILÍPEK, J. 2011. Anodic-Modified anticorrosive coatings. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(5): 23-30. DOI: 10.11118/actaun201159050023 Go to original source...
  4. ÈERNİ, M., FILÍPEK, J., ©OCH, Z. 2007. Influence of corrosion on the fatigue strength of the weld joint. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 55(5): 215-222. DOI: 10.11118/actaun200755050215 Go to original source...
  5. HOLE©OVSKİ, F., NÁPRSTKOVÁ, N., NOVÁK, M. 2012. GICS for grinding process optimization, Manufacturing technology, 12(1): 22-26. DOI: 10.21062/ujep/x.2012/a/1213-2489/MT/12/1/22 Go to original source...
  6. KHANDOKER, N., TAKLA, M. 2013. Tensile strength and failure simulation of simplified spot weld models. Materials and Design, 54: 323-330. DOI: 10.1016/j.matdes.2013.08.070 Go to original source...
  7. MUCHA, J. 2011. The analysis of rectangular clinching joint in the shearing test. Maintenance and Reliability, 3: 45-50.
  8. MÜLLER, M., 2013: Research of liquid contaminants influence on adhesive bond strength applied in agricultural machine construction. Agronomy Research, 11(1): 147-154.
  9. MÜLLER, M. 2014. Influence of adhesives storing temperature on adhesive bond strength. Manufacturing Technology, 14(1): 71-75. DOI: 10.21062/ujep/x.2014/a/1213-2489/MT/14/1/71 Go to original source...
  10. MÜLLER, M., HERÁK, D. 2013. Application possibilities of adhesive bonds - Europe, Indonesia. Scientia Agriculturae Bohemica, 44(3): 167-171. DOI: 10.7160/sab.2013.440307 Go to original source...
  11. MÜLLER, M., HERÁK, D., VALÁ©EK, P. 2013. Degradation limits of bonding technology depending on destinations Europe, Indonesia. Tehnicki Vjesnik-Technical Gazette, 20(4): 571-575.
  12. MÜLLER, M., VALÁ©EK, P. 2012. Degradation medium of agrokomplex - adhesive bonded joints interaction. Research in Agricultural Engineering, 58(3): 83-91. DOI: 10.17221/27/2011-RAE Go to original source...
  13. MÜLLER, M., VALÁ©EK, P. 2013. Assessment of bonding quality for several commercially available adhesives. Agronomy Research, 11(1): 155-162.
  14. NOVÁK, M. 2012. Surfaces with high precision of roughness after grinding. Manufacturing technology, 12(12): 66-70. DOI: 10.21062/ujep/x.2012/a/1213-2489/MT/12/1/66 Go to original source...
  15. NOVÁK, M. 2011. Surface quality of hardened steels after grinding. Manufacturing technology, 11(11): 55-59. DOI: 10.21062/ujep/x.2011/a/1213-2489/MT/11/1/55 Go to original source...
  16. VOTAVA, J. 2013. Protection of welded joints against corrosion degradation. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(6): 1897-1904. DOI: 10.11118/actaun201361061897 Go to original source...
  17. ZHANG, H., QIU, X., XING, F., BAI, J., CHEN, J. 2014. Failure analysis of dissimilar thickness resistance spot welded joints in dual-phase steels during tensile shear test. Meterials and Design, 55: 366-372. DOI: 10.1016/j.matdes.2013.09.040 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.