Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(2), 439-446 | DOI: 10.11118/actaun201563020439

The Using of Skeletochronology as a Screening Method for Age Determination of Alpine Newts (Mesotriton Alpestris): a Technical Report

Peter Makovický1, Oldřich Kopecký2, Pavol Makovický3, Radek Matlach4
1 Czech Centre for Phenogenomics (BIOCEV), Institute of Molecular Genetics of the ASCR, v. v. i., Department of Transgenic Models of Diseases, Vídeňská 1083, 142 20 Praha 4, Czech Republic
2 Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic
3 Department of Biology, Pedagogical faculty, Selye Janos University in Komárno, Bratislavská cesta 3322, 945 01 Komárno, Slovak Republic
4 Forensic Expert in the Field of Healthcare, Gutenbergova 272/5, 460 05 Liberec V-Kristiánov, Czech Republic

Skeletochronology is a widely used method for age determination in amphibians. This method is based mainly on the histological examination of the finger bones. However, the lengths of utilized severed fingers have not been specified in previous studies. The objective of this study was to analyse the structure of line arrested growth (LAGs) involving taking only the last two phalanges of a finger, and using the entire finger of Alpine newts (Mesotriton alpestris). Altogether 432 fingers were taken from four localities in the Czech Republic during the newt breeding period. The first group (group A) contained fingers that consisted of the last two phalanges (330 samples), and the second (group B) contained complete fingers with all phalanges (102 samples). All fingers were processed using standard histological methods and stained with hematoxylin-eosin. Phalange cross-section slides were made, and the ages of the individuals were determined by the number of LAGs. From two phalanges it is determine the age of 17.87% of newts; however, age determination was successful in 49.01% of newts when using whole fingers. Age determination success rate differences between groups were significant (P < 0.001). This is a histological study and it is recommended utilizing whole fingers in future Caudata amphibian screening age studies.

Keywords: age determination, Alpine newt, amphibian, bone histology, caudata, screening, line arrested growth, skeletochronology, zoology

Prepublished online: May 10, 2015; Published: April 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Makovický, P., Kopecký, O., Makovický, P., & Matlach, R. (2015). The Using of Skeletochronology as a Screening Method for Age Determination of Alpine Newts (Mesotriton Alpestris): a Technical Report. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(2), 439-446. doi: 10.11118/actaun201563020439


Errata to this article were published in: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2015, 63(3): 1079-1079. http://dx.doi.org/10.11118/actaun201563031079


Download citation

References

  1. ALTUNISIK, A., ERGUL, T., GÜL, C. et al. 2014. A skeletochronological study of the smooth newt Lissotriton vulgaris (Amphibia: Urodela) from island and mainland population in Turkey. Ital. J. Zool., 81(3): 381-388. DOI: 10.1080/11250003.2014.938134 Go to original source...
  2. BOVERO, S., ANGELINI, C. and UTZERI, C. 2006. Aging Salamandrina perspicillata (Savi, 1821) by skeletochronology. Acta Herpetol., 1(2): 153-158.
  3. BRUCE, R. C., CASTANET, J. and FRANCILLON-VIEILLOT, H. 2002. Skeletochronological analysis of variation in age structure, body size, and life history in three species of desmognathine salamanders. Herpetologica., 58(2): 181-193. DOI: 10.1655/0018-0831(2002)058[0181:SAOVIA]2.0.CO;2 Go to original source...
  4. CAETANO, M. H. and CASTANET, J. 1993. Variability and microevolutionary patterns in Triturus marmoratus from Portugal: age, size, longevity and individual growth. Amphibia-Reptilia., 14(2): 117-129. DOI: 10.1163/156853893X00291 Go to original source...
  5. CAETANO, M. H. and LECLAIR, R. 1996. Growth and population structure of red-spotted newts (Notophthalmus viridescens) in permanent lakes of the Laurentian shield, Quebec. Copeia., 1996(4): 866-874. DOI: 10.2307/1447649 Go to original source...
  6. EDEN, C. J., WHITEMAN, H. H., DUOBINIS-GRAY, L. et al. 2007. Accuracy assessment of skeletochronology in the Arizona Tiger salamander (Ambystoma tigrinum nebulosum). Copeia., 2007(2): 471-477. DOI: 10.1643/0045-8511(2007)7[471:AAOSIT]2.0.CO;2 Go to original source...
  7. FRANCILLON-VIEILLOT, H., DE BUFFRÉNIL, V., CASTANET, J. et al. 1990. Microstructure and mineralization of vertebrate skeletal tissues. 471-530. In: CARTER, J. G., Skeletal biomineralization. New York: Patterns, Processed, and Evolutionary Trends. Go to original source...
  8. GHERGHEL, I., STRUGARIU, A., GHIURCA, D. et al. 2008. The herpetofauna from the Bistrita river basin (Romania): geographical distribution. North-West. J. Zool., 4(S1): S71-S103.
  9. JAKOB, C., SEITZ, A., CRIVELLII, A. J. et al. 2002. Growth cycle of the marbled newt (Triturus marmoratus) in the Mediterranean region assessed by skeletochronology. Amphibia-Reptilia., 23(4): 407-418. DOI: 10.1163/15685380260462329 Go to original source...
  10. KHONSUE, W., CHAIANANPORN, T. and POMCHOTE, P. 2010. Skeletochronological assessment of age in the Himalayan Crocodile newt, Tylototriton verrucosus (Anderson, 1871) from Thailand. Tropical Natural History., 10(2): 181-188.
  11. LIMA, V., ARNTZEN, J. W. and FERRAND, H. M. 2001. Age structure and growth pattern in two populations of the golden-striped salamander Chioglossa lusitanica (Caudata, Salamandridae). Amphibia-Reptilia., 22(1): 55-68. DOI: 10.1163/156853801750096178 Go to original source...
  12. MAKOVICKÝ, P., KOPECKÝ, O. a RAJMON, R. 2011. Naše zkušenosti s určováním věku čolka horského pomocí skeletochronologie. Infovet., 18(4): 183-184.
  13. MARTINIAKOVÁ, M., GROSSKOPF, B., OMELKA, R. et al. 2006. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J. Forensic Sci., 51(6): 1235-1239. DOI: 10.1111/j.1556-4029.2006.00260.x Go to original source...
  14. MIAUD, C., JOLY, P. and CASTANET, J. 1993. Variation in age structures in a subdivided population of Triturus cristatus. Can. J. Zool., 71(9): 1874-1879. DOI: 10.1139/z93-267 Go to original source...
  15. MIAUD, C., GUYETANT, R. and FABER, H. 2000. Age, size, and growth of the alpine newt, Triturus alpestris (Urodela: Salamandridae), at high altitude and a review of life-history trait variation throughout its range. Herpetologica., 56(2): 135-144.
  16. OLGUN, K., MIAUD, C. and GAUTIER, P. 2001. Age, growth, and survivorship in the viviparous salamander Mertensiella luschani from southwestern Turkey. Can. J. Zool., 79(9): 1559-1567. DOI: 10.1139/cjz-79-9-1559 Go to original source...
  17. OLGUN, K., UZUM, N., AVCI, A. et al. 2005. Age, size, growth of the southern crested newt Triturus karelinii (Strauch 1870) in a population from Bozdag (Western Turkey). Amphibia-Reptilia., 26(4): 223-230. DOI: 10.1163/1568538054253465 Go to original source...
  18. STASOFT, Inc - STATISTICA. 2009. Statistica 9.0, USA.
  19. UZUM, N. 2009. A skeletochronological study of age, growth and longevity in a population of the Caucasian Salamander, Mertensiella caucasica (Waga 1876) (Caudata: Salamandridae) from Turkey. North-West. J. Zool., 5(1): 74-78.
  20. WAGNER, A., SCHABETSBERGER, R., SZTATECSNY, M. et al. 2011. Skeletochronology of phalanges underestimates the true age of long-lived Alpine newts (Ichthyosaura alpestris). Herpetol. J., 21(2): 145-148.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.