Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(1), 327-336 | DOI: 10.11118/actaun201563010327

Knowledge Support of Information and Communication Technology in Agricultural Enterprises in the Czech Republic

Václav Vostrovský1, Jan Tyrychtr2, Miloš Ulman2
1 Department of Software Engineering, Faculty of Economics and Management, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21 Praha 6-Suchdol, Czech Republic
2 Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21 Praha 6-Suchdol, Czech Republic

Presented article deals with issue of knowledge support of managerial decision making of entrepreneurs with regards to knowledge management principles. Basic idea of proposed solution is such a concept of information management of ICT/IT that would provide appropriate knowledge to decision makers. The core line of the approach is capturing of explicit knowledge relevant to given business activities into multidimensional databases that would become part of utilized ICT/IT. These issues are demonstrated on the agriculture domain where the need to computer storage of relevant knowledge and provide them on-demand is very up to date. Recently, it has become very necessary in frequently discussed agriculture technique called precision agriculture.

Keywords: knowledge support, precision agriculture, knowledge economy, multidimensional database, knowledge management, multidimensional modelling, knowledge rules
Grants and funding:

The results and knowledge included herein have been obtained owing to support from the Internal grant agency of the Faculty of Economics and Management, Czech University of Life Sciences in Prague, grant No. 20141036: "Analýza a přístupy k řešení informačních a znalostních potřeb v resort zemědělství v kontextu zemědělského eGovernmentu" and grant No. 20141040: "Nové metody pro podporu řídících pracovníků v zemědělství".

Prepublished online: March 14, 2015; Published: April 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vostrovský, V., Tyrychtr, J., & Ulman, M. (2015). Knowledge Support of Information and Communication Technology in Agricultural Enterprises in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(1), 327-336. doi: 10.11118/actaun201563010327
Download citation

References

  1. ABELLÓ, A. and ROMERO, O. 2009. On-Line Analytical Processing. In: L. LIU and M. T. ÖZSU (eds): Encyclopedia of Database Systems. USA: Springer US, 1949-1954. Go to original source...
  2. KHAN, A. 2005. SAP and BW Data Warehousing: How to Plan and Implement. iUniverse.
  3. BALLARD, C., HERREMAN, D., SCHAU, D., BELL, R., KIM, E. and VALENCIC, A. 1998. Data Modeling Techniques for Data Warehousing. IBM Redbook. edn. IBM International Technical Support Organization.
  4. BECKMAN, T. 1997. A methodology for knowledge management. International Association of Science and Technology for Development (IASTED).
  5. BOEHNLEIN, M. and ULBRICH-VOM ENDE, A. 1999. Deriving initial data warehouse structures from the conceptual data models of the underlying operational information systems. In: Proceedings of the 2nd ACM international workshop on Data warehousing and OLAP 1999. ACM, 15-21. Go to original source...
  6. CHAUDHURI, S. and DAYAL, U. 1997. An overview of data warehousing and OLAP technology. ACM Sigmod record, 26(1), 65-74. DOI: 10.1145/248603.248616 Go to original source...
  7. DATTA, A. and THOMAS, H. 1999. The cube data model: a conceptual model and algebra for on-line analytical processing in data warehouses. Decision Support Systems, 27(3), 289-301. DOI: 10.1016/S0167-9236(99)00052-4 Go to original source...
  8. FEIGENBAUM, E. A. and MCCORDUCK, P. 1983. The fifth generation: Artificial intelligence and Japan's challenge to the world.
  9. FONKAM, M. 1995. On a composite formalism and approach to presenting the knowledge content of a relational database. In: Advances in Artificial Intelligence. Springer, 274-284. Go to original source...
  10. HAWRYSZKIEWYCZ, I. 2009. Knowledge Management: Organizing Knowledge Based Enterprises. Palgrave Macmillan P.
  11. LEVENE, M. and LOIZOU, G. 2003. Why is the snowflake schema a good data warehouse design? Information Systems, 28(3): 225-240. DOI: 10.1016/S0306-4379(02)00021-2 Go to original source...
  12. MAŘÍK, V., ŠTĚPÁNKOVÁ, O. and LAŽANSKÝ, J. 1993. Umělá inteligence. Praha: Academia.
  13. NOVOTNÝ, O., POUR, J. and SLÁNSKÝ, D. 2005. Business Intelligence: Jak využít bohatství ve vašich datech. Praha: Grada Publishing.
  14. PANKOWSKI, T. 2012. Using data-to-knowledge exchange for transforming relational databases to knowledge bases. In: Rules on the Web: Research and Applications. Springer, 256-263. Go to original source...
  15. PEDERSEN, T. B. 2009a. Multidimensional Modeling.
  16. PEDERSEN, T. 2009b. Cube.
  17. PEDERSEN, T. 2009c. Dimension.
  18. RIZZI, S., ABELLÓ, A., LECHTENBÖRGER, J. and TRUJILLO, J. 2006. Research in data warehouse modeling and design: dead or alive? In: Proceedings of the 9th ACM international workshop on Data warehousing and OLAP 2006. ACM, 3-10. Go to original source...
  19. SAPIA, C., BLASCHKA, M., HÖFLING, G. and DINTER, B. 1999. Extending the E/R model for the multidimensional paradigm. Advances in Database Technologies. Springer, 105-116. Go to original source...
  20. VANÍČEK, J. and VOSTROVSKÝ, V. 2008. Knowledge acquisition from agricultural databases. Scientia Agriculturae Bohemica, 39.
  21. VASSILIADIS, P. and SELLIS, T. 1999. A survey of logical models for OLAP databases. ACM Sigmod Record, 28(4): 64-69. DOI: 10.1145/344816.344869 Go to original source...
  22. WU, M. and BUCHMANN, A. P. 1997. Research issues in data warehousing. In: DITTRICH, K. R. and GEPPERT, A. (eds.), Datenbanksysteme in Büro, Technik und Wissenschaft. Informatik aktuel edn. Springer, 61-82. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.