Acta Univ. Agric. Silvic. Mendelianae Brun. 2013, 61(7), 2151-2155 | DOI: 10.11118/actaun201361072151
Heteroskedasticity, temporal and spatial correlation matter
- Department of Economics, Department of Statistics and Operation Analysis, Mendel University in Brno, 613 00 Brno, Czech Republic
As economic time series or cross sectional data are typically affected by serial correlation and/or heteroskedasticity of unknown form, panel data typically contains some form of heteroskedasticity, serial correlation and/or spatial correlation. Therefore, robust inference in the presence of heteroskedasticity and spatial dependence is an important problem in spatial data analysis. In this paper we study the standard errors based on the HAC of cross-section averages that follows Vogelsang's (2012) fixed-b asymptotic theory, i.e. we continue with Driscoll and Kraay approach (1998). The Monte Carlo simulations are used to investigate the finite sample properties of commonly used estimators both not accounting and accounting for heteroskedasticity and spatiotemporal dependence (OLS, GLS) in comparison to brand new estimator based on Vogelsang's (2012) fixed-b asymptotic theory in the presence of cross-sectional heteroskedasticity and serial and spatial correlation in panel data with fixed effects. Our Monte Carlo experiment shows that the OLS exhibits an important downward bias in all of the cases and almost always has the worst performance when compared to the other estimators. The GLS corrected for HACSC performs well if time dimension is greater than cross-sectional dimension. The best performance can be attributed to the Vogelsang's estimator with fixed-b version of Driscoll-Kraay standard errors.
Keywords: heteroskedasticity, serial correlation, spatial correlation, Monte Carlo simulation, panel data, HAC estimator
Grants and funding:
Results published in the paper are a part of a research project "WWWforEurope" No. 290647 within Seventh Framework Programme supported financially by the European Commission.
Received: August 26, 2013; Published: December 24, 2013 Show citation
References
- ARELLANO, M., 1987: Computing Robust Standard Errors for Within-groups Estimators. Oxford Bulletin of Economics and Statistics, 49, 4: 431-434. ISSN 0305-9049. DOI: 10.1111/j.1468-0084.1987.mp49004006.x
Go to original source...
- BESTER, A. C., CONLEY, T. G., and HANSEN, C. B., 2011a: Inference with dependent data using cluster covariance estimators. Journal of Econometrics, 165, 2: 137-151. ISSN 0304-4076. DOI: 10.1016/j.jeconom.2011.01.007
Go to original source...
- BESTER, A. C., CONLEY, T. G., HANSEN, C. B., and VOGELSANG, T. J., 2011b: Fixed-b asymptotics for spatially dependent robust nonparametric covariance matrix estimators. Working Paper, Department of Economics, Michigan State University. Available online: https://www.msu.edu/~tjv/spatialhac.pdf.
- BORN, B., and BREITUNG, J., 2010: Testing for serial correlation in fixed-effects panel data models. Beiträge zur Jahrestatung des Vereins für Socialpolitik 2010: Ökonomie der Familie - Session: Panel Data Models, No. C15-V2. Available online: http://www.econstor.eu/bitstream/10419/37346/3/VfS_2010_pid_512.pdf.
- CONLEY, T. G., 1996: Econometric modelling of cross sectional dependence. Ph.D. Thesis. University of Chicago, Department of Economics.
- CONLEY, T. G., 1999: GMM estimation with cross sectional dependence. Journal of Econometrics, 92, 1: 1-45. ISSN 0304-4076. DOI: 10.1016/S0304-4076(98)00084-0
Go to original source...
- CONLEY, T., and MOLINARI, F., 2007: Spatial correlation robust inference with errors in location or distance. Journal of Econometrics, 140, 1: 76-79. ISSN 0304-4076. DOI: 10.1016/j.jeconom.2006.09.003
Go to original source...
- DAMA, M., 2013: Developing a two way error component estimation model with disturbances following a special autoregressive (4) for quarterly data. Economics Bulletin, 33, 1: 625-634. ISSN 1545-2921.
- DRISCOLL, J., and KRAAY, A. C., 1998: Consistent covariance matrix estimation with spatially dependent data. Review of Economics and Statistics, 80, 4: 549-560. ISSN 0034-6535. DOI: 10.1162/003465398557825
Go to original source...
- GROCHOVÁ, L., and STŘELEC, L., 2013: Performance of the OLS estimator in presence of autocorrelation. In: 11th International Conference of numerical analysis and applied mathematics icnaam 2013: ICNAAM, edited by T. E. Simos et al., AIP Conference Proceedings, 1558: 1851-1854. Melville, New York: American Institute of Physics. ISBN 978-0-7354-1184-5.
Go to original source...
- HANSEN, C. B., 2007: Asymptotic properties of a robust variance matrix estimator for panel data when T is large. Journal of Econometrics, 141, 2: 597-620. ISSN 0304-4076. DOI: 10.1016/j.jeconom.2006.10.009
Go to original source...
- KELEJIAN, H. H., and PRUCHA, I. R., 2007: HAC estimation in a spatial framework. Journal of Econometrics, 140, 1: 131-154. ISSN 0304-4076. DOI: 10.1016/j.jeconom.2006.09.005
Go to original source...
- KIM, M. S., and SUN, Y., 2013: Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects. Journal of Econometrics, 177, 1: 85-108. http://dx.doi.org/10.1016/j.jeconom.2013.07.002. ISSN 0304-4076. DOI: 10.1016/j.jeconom.2013.07.002
Go to original source...
- KIM, M. S., and SUN, Y., 2011: Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix. Journal of Econometrics, 160, 2: 349-371. ISSN 0304-4076. DOI: 10.1016/j.jeconom.2010.10.002
Go to original source...
- MOSCONE, F., and TOSETTI, E., 2012: HAC estimation in spatial panels. Economics Letters, 117, 1: 60-65. ISSN 0165-1765. DOI: 10.1016/j.econlet.2012.04.006
Go to original source...
- NEWEY, W. K., and WEST, K. D., 1987: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 3: 703-708. ISSN 0012-9682. DOI: 10.2307/1913610
Go to original source...
- PARKS, R., 1967: Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. Journal of the American Statistical Association, 62, 318: 500-509. ISSN 0162-1459. DOI: 10.1080/01621459.1967.10482923
Go to original source...
- ROBINSON, P., 2007: Nonparametric spectrum estimation for spatial data. Journal of Statistical Planning and Inference, 137, 3: 1024-1034. ISSN 0378-3758. DOI: 10.1016/j.jspi.2006.06.021
Go to original source...
- VOGELSANG, T. J., 2012: Heteroskedasticity, Autocorrelation, and Spatial Correlation Robust Inference in Linear Panel Models with Fixed-Effects. Journal of Econometrics, 166, 2: 303-319. ISSN 0304-4076. DOI: 10.1016/j.jeconom.2011.10.001
Go to original source...
- WHITE, H., 1980: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 4: 817-838. ISSN 0012-9682. DOI: 10.2307/1912934
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.