Acta Univ. Agric. Silvic. Mendelianae Brun. 2012, 60(2), 437-442 | DOI: 10.11118/actaun201260020437

Forecast of consumer behaviour based on neural networks models comparison

Michael ©tencl, Ondřej Popelka, Jiří ©»astný
Ústav informatiky, Mendelova univerzita v Brně, 613 00 Brno, Česká republika

The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models often resolve this task with more or fewer restrictions. In previous work where models' input conditions were not so strict and model with missing data was used (the time series didn't contain many values) we have obtained comparably good results with artificial neural networks. Two views - practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3) which defines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feed-forward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics of the models were evaluated using a combination of common error metrics, namely Correlation Coefficient and Mean Square Error, together with the number of epochs and/or main prediction error.

Keywords: artificial neural networks, forecasting methods, customer behaviour
Grants and funding:

This work was supported by research design No. MSM 6215648904/03/02.

Received: November 30, 2011; Published: October 3, 2013  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
©tencl, M., Popelka, O., & ©»astný, J. (2012). Forecast of consumer behaviour based on neural networks models comparison. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis60(2), 437-442. doi: 10.11118/actaun201260020437
Download citation

References

  1. ANDERSON, J. M., 2000: Computer Models for Retirement Policy. Paper presented at the Spring Retirement Meeting, Las Vegas.
  2. ARTL, J., ARTLOVÁ, M., 2007: Ekonomické časové řady. Grada Publishing.
  3. CZECH STATISTICAL OFFICE, 2009: Statistika rodinných účtů (vydání a spotřeba domácností). [cit. 2009-06-24]. Cited from.
  4. DE GOOIJER, J. G., KUMAR, K., 1992: Some recent developments in non-linear time series modelling, testing, and forecasting. International Journal of Forecasting 8, pp. 135-156. DOI: 10.1016/0169-2070(92)90115-P Go to original source...
  5. DREYFUS, G., MARTINEZ, J. M., SAMUELIDES, M., GORDON, M., BADRAN, F., THIRIA, S., HÉRAULT, L., 2005: Neural Networks - Methodology and Applications. Springer, Berlin.
  6. HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Edition. Springer Series in Statistics. Springer. Go to original source...
  7. HORNIK, K., 1993: Some new results on neural network approximation. Neural Networks 6, pp. 1069-1072. DOI: 10.1016/S0893-6080(09)80018-X Go to original source...
  8. KHASHEI, M., BIJARI, M., 2010: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with Applications, 37 (1). Go to original source...
  9. LAWRENCE, M., GOODWIN, P., O'CONNOR, M., ONKAL, D., 2006: Judgemental Forecasting: A Review of Progress Over the Last 25 Years. International Journal of Forecasting, 22, pp. 493-518. DOI: 10.1016/j.ijforecast.2006.03.007 Go to original source...
  10. MAKRIDAKIS, S. G., WHEELWRIGHT, S. C., HYNDMAN, R. J., 1998: Forecasting: Methods and Applications. New York: John Wiley & Sons.
  11. MILLS, A., 2009: Introduction to Forecasting Methods for Actuaries. Forecasting & Futurism.
  12. MCNELIS, P. D., 2005: Neural networks in finance - gaining predictive edge in the market. Elsevier Academic Press.
  13. POPELKA, O., ©«ASTNÝ, J., 2009: Uplatnění metod umělé inteligence v zemědělsko-ekonomických predikčních úlohách. Brno, Mendelova zemědělská a lesnická univerzita v Brně.
  14. SENAJ, M., 2007: Odhad spotrebnej funkcie pre Slovensko a prognóza spotreby. Výskumná ątúdia, 1/2007. Národná banka Slovenska.
  15. SENENSKY, B., 2008: Predictive Modeling. CompAct (SOA Technology Section newsletter).
  16. SINGER, M., 2007: Zadluľenost domácností v ČR podle poznatků ČNB. Euro setkání "®ivot na dluh". Česká národní banka.
  17. ©ÍMA, J., NERUDA, R., 1996: Theoretical Issues of Neural Networks. Prague: MATFYZPRESS, MFF UK. [cit. 2011-09-24]. Cited from.
  18. ©TENCL, M., ©«ASTNÝ, J., 2010: Neural network learning algorithms comparison on numerical prediction of real data. In: MENDEL 2010, 16th International Conference on Soft Computing. Brno University of Technology.
  19. WANG, Y.-H., 2009: Nonlinear neural network forecasting model for stock index option price: Hybrid GJR-GARCH approach. Expert Systems with Applications, 36 (1). Go to original source...
  20. YU, L., WANG, S., KEUNG LAI, K., 2009: A neural-network-based nonlinear metamodeling approach to financial time series forecasting. Applied Soft Computing, 9 (2). Go to original source...
  21. ZHANG, G. B., PATUWO, E., Hu, M. Y., 1998: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14 (1), pp. 35-62. DOI: 10.1016/S0169-2070(97)00044-7 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.