Acta Univ. Agric. Silvic. Mendelianae Brun. 2010, 58(3), 119-130 | DOI: 10.11118/actaun201058030119
Fraktálna analýza osteoporózy: prístup podielom vierohodnosti
- 1 Ústav aplikované statistiky, JKU Linz, Freistädter Straße 315, A-4040 Linz a. D., Rakousko
- 2 KMDG, Stavebná fakulta STU, Radlinského 11, 813 68 Bratislava, Slovenská republika
Na základe klasickej teórii fraktálov a článku Stehlík, (2009) sa zaoberáme analýzov fraktálnej dimenzie osteoporotických stavcov. Na začiatku článku približujeme užitočné výsledky z teórie fraktálov a ich použitie v medicíne. Potom ilustrujeme použitie analytického nástroja z Stehlík, (2009) na fraktálnu dimenziu osteoporotických stavcov. Ukazuje sa, že metóda môže slúžiť ako pomocný analytický nástroj pre diagnostiku ostoporózy.
fraktály, fraktálna dimenzia, deterministické a stochastické modely, osteporóza, rakovina, podiel vierohodnosti, chi-kvadrát rozdelenie
Fractal analysis for osteoporosis: a likelihood ratio approach
Based on the traditional fractal theory and on the paper of Stehlík, (2009) the range of fractal dimension of osteoporosis vertebras is analysed. First we give an insight into the field of fractals and the usage of fractals in medicine. After this we show how the analytical tool of Stehlík, (2009) may be applied to the osteoporosis vertebras. It turns out that the used method can be applied very well and that it could help with medical diagnosis. Real data example illustrates the methods discussed.
Keywords: fractals, fractal dimension, deterministic and stochastic models, osteoporosis, cancer, likelihood ratio statistics, chi-square distribution
Grants and funding:
We acknowledge grants VEGA 1/0269/09, APVV - 0351 - 07.
Received: April 13, 2010; Published: September 27, 2014 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Addison, P. S., 1997: Fractals and Chaos. An Illustrated Course. Florida: CRC. Press.
Go to original source...
- Bauer, W. and Mackenzie, C. D.: (w.y.). Cancer Detection via Determination of Fractal Cell Dimension. USA: Michigan State University.
- Baumann, G., 2005: Mathematica for Theoretical Physics. New York: Springer-Verlag.
Go to original source...
- Benhamou, C. L. et al., 1994: Changes in Fractal Dimension of Trabecular Bone in Osteoporosis: A preliminary study. In: Nonnenmacher, T. F., Losa G. A. and Weibel, E. R., Fractals in Biology and Medicine (292-298). Basel: Birkhäuser.
Go to original source...
- Bunde, A. and Havlin, S., 1994: Fractals in Science. Berlin: Springer-Verlag.
Go to original source...
- Filus, J., Filus, L. and Stehlík, M., 2009: Pseudoexponential modelling of cancer diagnostic testing. In: Biometrie und medizinische Informatik Greifswalder Seminar- berichte (ISBN 978-3-8322-7481-8 with Shaker Publ.), Paper 15, 41-54.
- Ishida, T. et al., 1993: Trabecular Pattern Analysis Using Fractal Dimension, Jpn. J. Appl. Phys. Vol. 32 (Part 1, No. 4), 1867-1871. DOI: 10.1143/JJAP.32.1867
Go to original source...
- Mandelbrot, B. B., 1977: Fractals: Form, Chance and Dimension. San Francisco: Freeman.
- Mandelbrot, B. B., 1987: Die fraktale Geometrie der Natur. Basel: Birkhäuser.
Go to original source...
- Peitgen, H.-O., Jürgens, H. and Saupe, D., 1992: Bausteine des Chaos. Fraktale. Berlin: Springer-Verlag.
Go to original source...
- Stehlík, M., 2003: Distributions of exact tests in the exponential family. Metrika 2003 57: 156-164. DOI: 10.1007/s001840200206
Go to original source...
- Stehlík, M., 2009: Topological aggregation and dependence structures, Ifas research Report.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.