Acta Univ. Agric. Silvic. Mendelianae Brun. 2009, 57(6), 209-214 | DOI: 10.11118/actaun200957060209
Štatistická analýza zmesí v pravdepodobnosti ruinovania
- 1 Ústav aplikovanej matematiky a statistiky, Univerzita Komenského, Mlynská Dolina, 842 48 Bratislava, Slovenská republika
- 2 Ústav aplikované statistiky, JKU Linz, Freistädter Straße 315, A-4040 Linz a. D., Rakousko
V našom príspevku sa zaoberáme aplikácou Cramer-Lundbergovej aproximácie pre škálové zmesy exponenciálnych rozdelení. Pri aplikácii uvedenej metódy na reálne dáta je potrebné otestovať vhodnosť modelu napr. testami Elr2 alebo Elrh uvedenými v príspevku. Prípad hornej a dolnej kontaminácie vedie na rozdielnu kvalitu aproximácie, preto je ich nutné starostlivo rozlišovať. Cramer-Lundbergova aproximácia je relatívne lepšia v prípade dolnej kontaminácie.
ELRH test, ELR2 test, pension pillar, ruin probability
Statistical analysis of mixtures underlying probability of ruin
If the hypothesis on exponentially distributed claims in a risk (or surplus) model is untenable then, in many cases, the assumption that they are mixtures of two (or more) exponentials is a suitable substitute. In the first part of the paper tests of homogeneity for exponentially distributed claims are discussed and their properties are stated. The statistical properties of parameter estimations for such claims are also mentioned. In the second part the classical Cramer-Lundberg ruin model is discussed when claims are distributed as mixtures of exponentials. Our attention is focussed primarily on assesment of accuracy of approximations obtained. Then our results are compared to those already known.
Grants and funding:
Research of Stehlík M. was partially supported by Project 50p14 "AKTION Czech Republic-Austria": Effective estimation supporting the risk assessment for Basel II".
Received: July 28, 2009; Published: October 7, 2014 Show citation
References
- BüHLMANN, H., 1970: Mathematical methods in risk theory. Springer-Verlag. ISSN 0072-7830.
- GerBER, H. U., 1979: An introduction to mathematical risk theory. S. S. Huebner Foundation, Philadelphia, PA.
- POTOCKÝ, R., STEHLÍK, M., 2005: Analysis of pensions in the 1st pilar under the expected demographic development. Proceedings of 10th Slovak Conference on Demography, Smolenice.
- POTOCKÝ, R., STEHLÍK, M., 2007: Stochastic models in insurance and finance with respect to Basel II, JAMSI, 3, No. 2, p. 237-245
- RUBLÍK, F, 1989: On optimality of the LR tests in the sense of exact slopes, Part 1, General case. Kybernetika, 13-25
- RUBLÍK, F, 1989: On optimality of the LR tests in the sense of exact slopes, Part 2, Application to Individual Distributions. Kybernetika, 117-135
- SHELDON, L. X. E, WILLMOT, G., DREKIC, S., 2003: The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, Vol. 33, No 3, 551-566 (16)
Go to original source...
- SCHMIDLI, H., 2000: Lecture notes on Risk Theory. University of Aarhus
- STEHLÍK, M., 2003: Distributions of exact tests in the exponential family, Metrika 57, 145-164 DOI: 10.1007/s001840200206
Go to original source...
- STEHLÍK, M., OSOSKOV, G. A., 2003: Efficient testing of the homogeneity, scale parameters and number of components in the Rayleigh mixture. JINR Rapid Communications E-11-2003-116.
- STEHLÍK, M., STŘELEC, L.,2009: On normality assumptions for claims in insurance, Acta univ. agric. et silvic. Mendel. Brun., 2009, LVII, No. 3, ISSN 1211-8516, p. 141-146 DOI: 10.11118/actaun200957030141
- STEHLÍK, M., WAGNER, H., 2009: Exact likelihood ratio testing for homogeneity of the exponential distribution, IFAS Res. Rep. 39.
- STEHLÍK, M., 2006: Exact likelihood ratio scale and homogeneity testing of some loss processes. Statistics and Probability Letters 76, 19-26. DOI: 10.1016/j.spl.2005.06.005
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.