Acta Univ. Agric. Silvic. Mendelianae Brun. 2008, 56(5), 19-24 | DOI: 10.11118/actaun200856050019

Antibakteriální účinky komerčních fosfátů na vybrané mikroorganismy

Leona Buňková1, Pavel Pleva1, František Buňka2, Pavel Valášek2, Stanislav Kráčmar2
1 Ústav technologie tuků, tenzidů a kosmetiky, Fakulta technologická, Univerzita Tomáše Bati ve Zlíně, nám. T. G. Masaryka 275, 762 72 Zlín, Česká republika
2 Ústav potravinářského inženýrství, Fakulta technologická, Univerzita Tomáše Bati ve Zlíně, nám. T. G. Masaryka 275, 762 72 Zlín, Česká republika

Fosfáty, polyfosfáty a jejich soli se v potravinářském průmyslu využívají například při výrobě tavených sýrů jako tavicí soli. Inhibiční účinky tří komerčně využívaných fosfátů a polyfosfátů lišících se délkou řetězce (690, S9 a HBS) byly testovány na 15 sbírkových kmenech grampozitivních a gramnegativních bakterií a dále u 12 kmenů bakterií, které byly izolovány z tavených sýrů. Pro sledování inhibičního působení použitých fosfátových solí na růst testovaných mikroorganismů bylo zvoleno pět koncentrací každého fosfátu (0,1, 0,2, 0,3, 0,4 a 0,5 % w/v). Citlivost jednotlivých kmenů bakterií k fosfátům byla sledována v tekutém kultivačním médiu, které bylo obohaceno o příslušné soli a následně byl nárůst buněk zjišťován měřením optické denzity při vlnové délce 600 nm. Výsledky ukazují, že fosfáty 690 a S9, obsahující především orthofosfáty, difosfáty (pyrofosfáty) a polyfosfáty s krátkým řetězcem, nemají významný inhibiční vliv na růst testovaných bakterií. Signifikantní inhibiční účinky má pouze sůl HBS (směs polyfosfátů s dlouhým řetězcem), která vykazovala antibakteriální účinky vůči všem testovaným grampozitivním bakteriím (sbírkovým i izolovaným z tavených sýrů). Antibakteriální efekt fosfátů vůči grampozitivním mikroorganismům roste se zvyšující se délkou polyfosfátového řetězce. Tato studie neprokázala významný účinek testovaných fosfátů na růst použitých gramnegativních bakterií.

fosfáty, polyfosfáty, mikroorganizmy, antimikrobiální efekt

Antibacterial effects of commercially available phosphates on selected microorganisms

In the food industry, phosphates, polyphosphates and their salts are used, for example, as emulsifying agents in the production of processed cheese. The inhibitory effects of three commercially available phosphates and polyphosphates differing in their chain length (690, S9 and HBS) were tested on a set of 15 gram-positive or gram-negative CCM (Czech Collection of Microorganisms) strains and on 12 bacterial strains isolated from processed cheeses. Five different concentrations of each phosphate were chosen (0.1, 0.2, 0.3, 0.4 and 0.5% w/v) in order to observe the inhibitory effects of the phosphate salts on the growth of the microorganisms tested. Sensitivity of the individual bacterial strains to phosphates was observed of a liquid cultivation medium which was supplemented with applied salts. Subsequently, the growth in cells was determined by measuring optical density at a wavelength of 600 nm. According to the results, 690 and S9 phosphates, containing mainly orthophosphates, diphosphates (pyrophosphates) and short-chain polyphosphates, do not have a significant inhibitory effect on the growth of the tested bacteria. Significant inhibitory effects were observed only in HBS salt (a mixture of long-chain polyphosphates), which showed antibacterial effects on all gram-positive bacteria tested (both the CCM strains and those isolated from processed cheeses). The antibacterial effect of phosphates on gram-positive microorganisms is growing with the increasing length of the polyphosphate chain. This study has not proved a significant effect of the phosphates tested on the growth of gram-negative bacteria used.

Keywords: phosphate, polyphosphate, microorganisms, antibacterial effect
Grants and funding:

This work was kindly supported by a project of Czech Ministry of Education, Youth and Sports (Grant No. MSM 7088352101).

Received: March 31, 2008; Published: November 3, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Buňková, L., Pleva, P., Buňka, F., Valášek, P., & Kráčmar, S. (2008). Antibacterial effects of commercially available phosphates on selected microorganisms. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis56(5), 19-24. doi: 10.11118/actaun200856050019
Download citation

References

  1. BORCH, E. and LYCKEN, L., 2007: Influence of long-chain polyphosphate and heat treatment on Clostridium cochlearium and Clostridium sporogenes isolated from processed cheese spread. J. Food Protect., 70: 744-747. ISSN 0362-028X. DOI: 10.4315/0362-028X-70.3.744 Go to original source...
  2. BRIOZZO, J., de LAGARDE, E. A., CHIRIFE, J. and PARADA, J. L., 1983: Clostridium botulinum type A growth and toxin production in media and process cheese spread. Appl. Environ. Microbiol., 45: 1150-1152. ISSN 0099-2240. Go to original source...
  3. CARIĆ, M., GANTAR, M. and KALÁB, M., 1985: Effects of emulsifying agents on the microstructure and other characteristics of process cheese - a review. Food Microstruc., 4: 297-312. ISSN 0730-5419.
  4. ECKNER, K. F., DUSTMAN, W. A. and RYSRODRIGUEZ, A. A., 1994: Contribution of composition, physicochemical characteristics and polyphosphates to the microbial safety of pasteurized cheese spreads. J. Food Protect., 57: 295-300. ISSN 0362-028X. DOI: 10.4315/0362-028X-57.4.295 Go to original source...
  5. GUINEE, T. P., CARIĆ, M. and KALÁB, M., 2004: Pasteureized processed cheese and substitute/imitation cheese products. In. Cheese: Chemistry, Physics and Microbiology. Volume 2: Major Cheese Groups. Eds. Fox, P. F., Elsevier Applied Science London and New York, 349-394. ISBN 0 1226 3651 8. Go to original source...
  6. ICMSF: Microorganisms in foods. Microbial ecology of food commodities. New York: Kluwer Academic, 2005, 763 p. ISBN 0-306-48675-X.
  7. JEN, C. M. C. and SHELEF, L. A., 1986: Factors affecting sensitivity of Staphylococcus aureus 196E to polyphosphates. Appl. Environ. Microbiol., 52: 842-846. ISSN 0099-2240. Go to original source...
  8. KNABEL, S. J., WALKER, H. W. and HARTMAN, P. A., 1991: Inhibition of Aspergillus flavus and selected Gram-positive bacteria by chelation of essential metal-cations by polyphosphates. J. Food Protect., 54: 360-365. ISSN 0362-028X. DOI: 10.4315/0362-028X-54.5.360 Go to original source...
  9. LEE, J. Y., KIM, Y. S. and SHIN, D. H., 2002: Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus. J. Agric. Food Chem., 50: 2193-2199. ISSN 0021-8561. DOI: 10.1021/jf011175a Go to original source...
  10. LEE, R. M., HARTMAN, P. A., OLSON, D. G. and WILLIAMS, F. D., 1994a: Bactericidal and bacteriolytic effects of selected food-grade phosphates, using Staphylococcus aureus as a model system. J. Food Protect., 57: 276-283. ISSN 0362-028X. DOI: 10.4315/0362-028X-57.4.276 Go to original source...
  11. LEE, R. M., HARTMAN, P. A., STAHR, H. M., OLSON, D. G. and WILLIAMS, F. D., 1994b: Antibacterial mechanism of long-chain polyphosphates in Staphylococcus aureus. J. Food Protect., 57: 289-294. ISSN 0362-028X. DOI: 10.4315/0362-028X-57.4.289 Go to original source...
  12. LOESSNER, M. J., MAIER, S. K., SCHIWEK, P. and SCHERER, S., 1997: Long-chain polyphosphates inhibit growth of Clostridium tyrobutyricum in processed cheese spreads. J. Food Protect., 60: 493-498. ISSN 0362-028X. DOI: 10.4315/0362-028X-60.5.493 Go to original source...
  13. MAIER, S. K., SCHERER, S. and LOESSNER, M. J., 1999: Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl. Environ. Microbiol., 65: 3942-3949. ISSN 0099-2240. Go to original source...
  14. MIZUNO, R. and LUCEY, J. A., 2005: Effects of emulsifying salts on the turbidity and calcium-phosphate-protein interactions in casein micelles. J. Dairy Sci., 88: 3070-3078. ISSN 0022-0302. DOI: 10.3168/jds.S0022-0302(05)72988-X Go to original source...
  15. MOLINS, R. A.: Phosphates in food. Boca Raton: CRC Press, 1991, 261 p. ISBN 0-8493-4588-X
  16. MOLINS, R. A., KRAFT, A. A., WALKER, H. W. and OLSON, D. G., 1985: Effect of poly- and pyrophosphates on the natural bacterial flora and inoculated Clostridium sporogenes PA 3679 in cooked vacuum packaged bratwurst. J. Food Sci., 50: 876-880. ISSN 0022-1147. DOI: 10.1111/j.1365-2621.1985.tb12970.x Go to original source...
  17. RAJKOWSKI, K. T., CALDERONE, S. M. and JONES, E., 1994: Effect of polyphosphate and sodium chloride on the growth of Listeria monocytogenes and Staphylococcus aureus in ultra-high temperature milk. J. Dairy Sci., 77: 1503-1508. ISSN 0022-0302. DOI: 10.3168/jds.S0022-0302(94)77089-2 Go to original source...
  18. SUAREZ, V. B., CARRASCO, M., SIMONETTA, A., RIVERA, M. and REINHEIMER, J. A., 2007: Phosphates as inhibitors of yeasts isolated from food sources. Ital. J. Food Sci., 19: 255-262. ISSN 1120-1770.
  19. SUAREZ, V. B., FRISON, L., DE BASILICO, M. Z., RIVEIRA, M. and REINHEIMER, J. A., 2005: Inhibitory activity of phosphates on molds isolated from foods and food processing plants. J. Food Protect., 68: 2475-2479. ISSN 0362-028X. DOI: 10.4315/0362-028X-68.11.2475 Go to original source...
  20. VARELTZIS, K., SOULTOS, N., KOIDIS, P., AMBROSIADIS, J. and GENIGEORGIS, C., 1997: Antimicrobial effects of sodium tripolyphosphate against bacteria attached to the surface of chicken carcasses. LWT - Food Sci. Technol., 30: 665-669. ISSN 0023-6438. DOI: 10.1006/fstl.1997.0233 Go to original source...
  21. VARGA, L., 2005: Use a long-chain polyphosphate mixture for shelf-life extension of processed cheese spreads. Acta Aliment., 34: 493-498. ISSN 0139-3006. DOI: 10.1556/AAlim.34.2005.4.16 Go to original source...
  22. VELAZQUEZ, L. D., ESCUDERO, M. E. and de GUZMAN, A. M., 2001: Antibacterial effects of different food-related phosphates using Aeromonas hydrophila. J. Food Protect., 64: 195-200. ISSN 0362-028X. DOI: 10.4315/0362-028X-64.2.195 Go to original source...
  23. ZAIKA, L. L. and KIM, A. H., 1993: Effect of sodium polyphosphates on growth of Listeria monocytogenes. J. Food Protect., 56: 577-580. ISSN 0362-028X. DOI: 10.4315/0362-028X-56.7.577 Go to original source...
  24. ZAIKA, L. L., SCULLEN, J. and FANELLI, J. S., 1997: Growth inhibition of Listeria monocytogenes by sodium polyphosphate as affected by polyvalent metal ions. J. Food Sci., 62: 867-872. ISSN 0022-0302. DOI: 10.1111/j.1365-2621.1997.tb15474.x Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.