Acta Univ. Agric. Silvic. Mendelianae Brun. 2008, 56(4), 103-108 | DOI: 10.11118/actaun200856040103

Obecný model dřeva v typických vázaných úlohách, Část II. - Slabé řešení

Petr Koňas, Eva Přemyslovská
Ústav nauky o dřevě, Mendelova zemědělská a lesnická univerzita v Brně, Zemědělská 3, 613 00 Brno, Česká republika

Bylo nalezeno slabé řešení sdružené napjatostní úlohy s vlhkostní/teplotní závislostí materiálového modelu. S výhodou byla použita homogenizační metoda subgrid upscaling vhodná pro hierarchické struktury velkého měřítka, jakou je např. struktura dřeva. Byla sestavena modifikovaná Ritz-Galerkinova metoda pro snadné použití. Rovněž byla použita koeficientová forma obyčejné diferenciální rovnice vhodná pro dnešní numerické řešiče (viz Část I.). Navrhované slabé řešení nabízí jedinečné a relativně přesné řešení problémů na velkých měřítkách, které závisí na nižším měřítku. Řešení je velmi obecné a mírná modifikace navrhovaného přístupu poskytuje řešení řady běžných úloh biomechaniky.

MKP, vázané fyzikální úlohy, mikrovlnné sušení dřeva, homogenizace

General model of wood in typical coupled tasks, Part II. - Weak solution

The main aim of this work is focused on weak solution of coupled physical task the microwave drying of wood with stress-strain effects and moisture/temperature dependency. Due to well known weak solution for separated physical fields without coupled effect, author concerns with coupled stress-strain relation coupled with moisture and temperature distribution. For scale dependency the subgrid upscaling method was used. Solved region is assumed to be divided into discontinual subregions according to investigated scale. This approach sugests sequential type of solution for highly coupled task. This way, very huge structures (huge according to geometry and also physics) can be solved in reasonable time and with memory consumptions. Main emphasis was putted on evaluation of structural response of the whole complex. Due to influence of moisture, temperature and time the coupled physical task of structural response is solved. Sugested aproach is of course usable not only for structural response, but for other physical fields, which were taken into account. Weak solution is based on slightly modified Ritz-Galerkin method. The work is continuing of the previous article General model of wood in typical coupled tasks: Part I. - Phenomenological approach.

Keywords: FEM, multiphysics, microwave wood drying, upscaling, homogenisation
Grants and funding:

The work is supported by project GAČR GP106/06/P363 (P526563605) - Homogenization of material properties of wood for tasks from mechanics and thermodynamics

Received: March 14, 2008; Published: November 8, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Koňas, P., & Přemyslovská, E. (2008). General model of wood in typical coupled tasks, Part II. - Weak solution. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis56(4), 103-108. doi: 10.11118/actaun200856040103
Download citation

References

  1. ARBOGAST, T. MINKOFF, S. AND KEENAN, P., 1998: An operator-based approach to upscaling the pressure equation, Comput. Methods in Water Resource XII, 1 (1998), pp. 405-412
  2. ARBOGAST, T., 2000: Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media, Lect. Notes Phys. 552, Springer, Berlin
  3. ARBOGAST, T. AND BRYANT, S., 2002: A two-scale numerical subgrid technique for waterflood simulations SPE J. 27, pp. 446-457 DOI: 10.2118/81909-PA Go to original source...
  4. ARBOGAST, T., 2002, Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase flow, Comput. Geosci., 6, pp. 453-458 DOI: 10.1023/A:1021295215383 Go to original source...
  5. BODIG, J., JAYNE, B. A., 1982: Mechanics of wood and wood composites, New York: Van Nostrand Reinhold: pp. 736
  6. KOROSTYSCHEVSKAYA, O., MINKOFF, S., E., 2006: A matrix analysis of operator-based upscaling for the wave equation, Society for Industrial and Applied Mathematics, SIAM J. Numer. Anal. Vol. 44, No. 2, pp. 586-612 DOI: 10.1137/050625369 Go to original source...
  7. KRIEGSMANN, G. A., 1997: Hot spot formation in microwave heated ceramic fibres. IMA Journal of Applied Mathematics, 59 (2): pp. 123-148 DOI: 10.1093/imamat/59.2.123 Go to original source...
  8. REKTORÝS, K., 1999: Variační metody v inženýrských problémech a v problémech matematické fyziky, Academia Praha
  9. XIAOFENG, W., 2002: Experimental and Theoretical Study of Microwave Heating of Thermal Runaway Materials, Virginia, dissertation.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.