Acta Univ. Agric. Silvic. Mendelianae Brun. 2020, 68(6), 929-936 | DOI: 10.11118/actaun202068060929

Molecular Evaluation of Three Populations of Farafra Sheep in Comparison to Ossimi and Rahmani Sheep Breeds

Talaat Bashandy1, Ahmed Hussein2, Mohamed Solma3, Ayman Kassab3, Hatem Hamdon3
1 Department of Genetics, Faculty of Agriculture, New Valley University, New Valley, Egypt
2 Department of Animal Production, Faculty of Agriculture, Assuit University, Asyut, Egypt
3 Department of Animal Production, Faculty of Agriculture, New Valley University, New Valley, Egypt

Molecular markers are the most ideal approach to study genetic diversity. Consequently, we utilized both ISSR and RAPD markers to assess genetic diversity and relationships among three different populations of Farafra, Ossimi and Rahmani Egyptian sheep breeds. Both ISSR and RAPD gave moderate polymorphism 41.3% and 48.51%, respectively. Besides, this value was consistent with the moderate value of the mean of polymorphism information content (0.16 and 0.20, respectively). Farafra-F and Farafra-D populations had the highest similarity which was 0.92 for ISSR and 0.90 for the RAPD marker. Furthermore, ISSR and RAPD constructed dendrogram separated all the studied sheep into two main clusters. All the three populations of Farafra breed combined into one main cluster, while the second cluster contained both Rahmani and Ossimi breeds. The used molecular markers were able to discriminate among evaluated sheep and displayed that Farafra breed more closely related to Ossimi than Rahmani breed.

Keywords: dendrogram, Farafra sheep, genetic diversity, ISSR, molecular markers, RAPD
Grants and funding:

We are grateful to the Faculty of Agriculture, New Valley University, Egypt for the financial support of this work.

Received: August 20, 2020; Accepted: November 18, 2020; Published: December 17, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bashandy, T., Hussein, A., Solma, M., Kassab, A., & Hamdon, H. (2020). Molecular Evaluation of Three Populations of Farafra Sheep in Comparison to Ossimi and Rahmani Sheep Breeds. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis68(6), 929-936. doi: 10.11118/actaun202068060929
Download citation

References

  1. ABDEL-RAHMAN, S. M., EL-NAHAS, A. F., HEMEDA, S. A., EL-FIKY, S. A. and NASR, S. M. 2010. Genetic variability among four Egyptian sheep breeds using random amplified polymorphic DNA (RAPD) and PCR-RFLP Techniques. Journal of Applied Sciences Research, 6(1): 1-5.
  2. ANDERSON, J., CHURCHILL, G., AUTRIQUE, J., TANKSLEY, S. and SORRELLS, M. 1993. Optimizing parental selection for genetic linkage maps. Genome, 36(1): 181-186. DOI: 10.1139/g93-024 Go to original source...
  3. BARDAKCI, F. 2001. Random amplified polymorphic DNA (RAPD) markers. Turkish Journal of Biology, 25: 185-196.
  4. DEHOUX, J. and VERHULST, A. 1994. Une race trypanotolerante méconnue: la Borgou. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales, 13: 39-45. Go to original source...
  5. ELBELTAGY, A. R. 2012. Characterization and value addition to local breeds and their products in the Near East and North Africa. In: Regional Workshop Rabat, Morocco. 19-21 November.
  6. EL-HAMAMSY, S., EL-SAYED, M., EL BADAWY, A. and TELEB, D. 2018. Characterization of some Egyptian sheep populations using microsatellite and protein markers. Journal of Agricultural Chemistry and Biotechnology, 9(8): 181-188. DOI: 10.21608/jacb.2018.35242 Go to original source...
  7. ELMACI, C., ONER, Y., OZIS, S. and TUNCEL, E. 2007. RAPD analysis of DNA polymorphism in Turkish sheep breeds. Biochemical genetics, 45(9-10): 691-696. DOI: 10.1007/s10528-007-9106-x Go to original source...
  8. ELMEER, K., ALGHANEM, M., AL-LATIFI, L. and ALHEMAIRI, H. 2017. Efficiency of RAPD and ISSR markers for the detection of polymorphisms and genetic relationships in date palm. Biotechnology, 16(1): 19-26. DOI: 10.3923/biotech.2017.19.26 Go to original source...
  9. ELSHAZLY, A. G. and YOUNGS, C. R. 2019. Feasibility of utilizing advanced reproductive technologies for sheep breeding in Egypt. Part 1. Genetic and nutritional resources. Egyptian Journal of Sheep and Goats Sciences, 14(1): 39-52.
  10. GALAL, S. 2007. Farm animal genetic resources in Egypt: factsheet. Egyptian Journal of Animal Production, 44(1): 1-23. DOI: 10.21608/ejap.2007.93149 Go to original source...
  11. GHAZY, A., MOKHTAR, S., EID, M., AMIN, A., ELZAREI, M., KIZAKI, K. and HASHIZUME, K. 2013. Genetic diversity and distances of three Egyptian local sheep breeds using microsatellite markers. Research in Zoology, 3(1): 1-9.
  12. GUASMI, F., ELFALLEH, W., HANNACHI, H., FERES, K., TOUIL, L., MARZOUGUI, N. and FERCHICHI, A. 2012. The use of ISSR and RAPD markers for genetic diversity among south Tunisian barley. International Scholarly Research Network Agronomy, 2012: 952196. Go to original source...
  13. HAIDER, N., NABULSI, I. and MIRALI, N. 2012. Phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars in Syria using RAPD and ISSR markers. Journal of Plant Biology Research, 1(2): 12-24.
  14. JACCARD, P. 1908. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 44(163): 223-270.
  15. MAHFOUZ, E. R., OTHMAN, O. E., EL NAHAS, S. M. and EL BARODY, M. A. 2008. Genetic variation between some Egyptian sheep breeds using RAPD-PCR. Research Journal of Cell and Molecular Biology, 2(2): 46-52.
  16. MOHAMMADABADI, M. R., ESFANDYARPOOR, E. and MOUSAPOUR, A. 2017. Using inter simple sequence repeat multi-loci markers for studying genetic diversity in Kermani sheep. Journal of Research and Development, 5(2): 154.
  17. MOUSA, E., OSMAN, M. A. and EL-SAIED, U. 2006. Genetic parameters for body weight of Egyptain Farafra lambs with random regression model. Egyptian Journal of Animal Production, 43: 57-69. Go to original source...
  18. OTHMAN, O. E., PARISET, L., BALABEL, E. A. and MARIOTI, M. 2015. Genetic characterization of Egyptian and Italian sheep breeds using mitochondrial DNA. Journal of Genetic Engineering and Biotechnology, 13(1): 79-86. DOI: 10.1016/j.jgeb.2014.12.005 Go to original source...
  19. POWELL, W., MORGANTE, M., ANDRE, C., HANAFEY, M., VOGEL, J., TINGEY, S. et al. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(3): 225-238. DOI: 10.1007/BF00564200 Go to original source...
  20. PRASAD, B., BABAR, M. A., XU, X. Y., BAI, G. H. and KLATT, A. R. 2009. Genetic diversity in the US hard red winter wheat cultivars as revealed by microsatellite markers. Crop and Pasture Science, 60(1): 16-24. DOI: 10.1071/CP08052 Go to original source...
  21. PREVOST, A. and WILKINSON, M. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and applied Genetics, 98(1): 107-112. DOI: 10.1007/s001220051046 Go to original source...
  22. RUSHDI, H. E. 2018. Microsatellite-based genetic diversity among Egyptian sheep breeds. Journal of Animal and Poultry Production, 9(4): 219-226. DOI: 10.21608/jappmu.2018.39823 Go to original source...
  23. TONK, F. A., TOSUN, M., ILKER, E., ISTIPLILER, D. and TATAR, O. 2014. Evaluation and comparison of ISSR and RAPD markers for assessment of genetic diversity in triticale genotypes. Bulgarian Journal of Agricultural Science, 20(6): 1413-1420.
  24. WILLIAMS, J. G. K., KUBELIK, A. R., LIVAK, K. J., RAFALSKI, J. A. and TINGEY, S. V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic acids research, 18(22): 6531-6535. DOI: 10.1093/nar/18.22.6531 Go to original source...
  25. ZAMANI, P., AKHONDI, M. and MOHAMMADABADI, M. 2015. Associations of Inter-Simple Sequence Repeat loci with predicted breeding values of body weight in sheep. Small Ruminant Research, 132(3): 123-127. DOI: 10.1016/j.smallrumres.2015.10.018 Go to original source...
  26. ZIETKIEWICZ, E., RAFALSKI, A. and LABUDA, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2): 176-183. DOI: 10.1006/geno.1994.1151 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.