Acta Univ. Agric. Silvic. Mendelianae Brun. 2020, 68(5), 851-857 | DOI: 10.11118/actaun202068050851

The Effects of Potassium Silicate as a Component of Nutrient Medium for Selected in Vitro Cultures of Prunus and Corylus Genera

Eliška Kadlecová1, Miroslav Baránek1, Samuel Magnús2, Filip Gazdík1
1 Mendeleum - Department of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic
2 Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic

Even though silicon is frequent compound in soil, its use in plant nutrient media is rare. Based on known physiological role and up to now performed studies it seems that silicon has a good potential to improve growth characteristics of in vitro cultivated plants. Before practical application, however, it is always necessary to assess the optimal conditions of application with regard to the fact that plant reactions to different chemicals added to nutritional media can vary on the species or even cultivar level. The presented study evaluate effects of potassium silicate used in in vitro cultivation media on growth parameters of Prunus persica × Prunus davidiana 'Cadaman,' Prunus × amygdalopersica 'GF 677' and Corylus avellana 'Tonda di Giffoni' genotypes, which are frequently subject of commercial in vitro multiplication.
In fact, four different concentrations of potassium silicate was added to the multiplication media, control medium was left silicon-free. Three different characteristics were observed during cultivation - number of new shoots per explant, weight of a new plant and length of new shoots, from which number of new shoots per explant was considered the most important factor.
In all cases a positive effects of potassium silicate on the condition and other growth parameters of treated cultures were observed. In 'Cadaman' culture significant growth changes appeared on media with 20 mg.l-1 potassium silicate, which can be recommended for future applications. For 'GF 677' the best results were obtained on media with 2 mg.l-1 which can be recommended for improving condition and number of shoots on new plants. For hazelnut genotype 'Tonda di Giffoni' best results were obtained on media with 10 mg.l-1 of potassium silicate, but also use of 5 mg.l-1 of potassium silicate significantly improved growth parameters. Generally, presented study provides important and practically useful insights into the practical use of silicon in cultivation media designated for commercial in vitro micropropagation.

Keywords: silicon, micropropagation, tissue culture, in vitro, Prunus, Corylus, media
Grants and funding:

This work was supported by IGA - ZF/2018 - DP004 of Mendel University in Brno, Czech Republic. This work was partially supported by using the infrastructure obtained from the project CZ.02.1.01/0.0/0.0/16_017/0002334 Research Infrastructure for Young Scientists is co-financed from Operational Programme Research, Development and Education.

Received: March 18, 2020; Accepted: September 16, 2020; Published: November 1, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kadlecová, E., Baránek, M., Magnús, S., & Gazdík, F. (2020). The Effects of Potassium Silicate as a Component of Nutrient Medium for Selected in Vitro Cultures of Prunus and Corylus Genera. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis68(5), 851-857. doi: 10.11118/actaun202068050851
Download citation

References

  1. AVESTAN, S., NASERI, L. A., HASSANZADE, A., SOKRI, S. M. and BARKER, A. V. 2015. Effects of nanosilicon dioxide application on in vitro proliferation of apple rootstock. Journal of Plant Nutrition, 39(6): 850-855. DOI: 10.1080/01904167.2015.1061550 Go to original source...
  2. COLOMBO, R. C., FAVETTA, V., DE FARIA, R. T., DE ANDRATE, F. A. and MELEM, V. M. 2016. Response of Cattleya forbesii orchid to increasing silicon concentrations in vitro. Revista Caatinga, 29(1): 18-24. DOI: 10.1590/1983-21252016v29n103rc Go to original source...
  3. DA SILVA, D. P. C., DE OLIVEIRA PAIVA, P. D., HERRERA, R. C., PORTO, J. M. P., DOS REIS, M. V. and PAIVA, R. 2020. Effectiveness of silicon sources for in vitro development of gerbera. Plant Cell, Tissue and Organ Culture (PCTOC), 141(1): 77-85. DOI: 10.1007/s11240-020-01768-8 Go to original source...
  4. GHADAKCHI ASL, A., MOZAFARI, A. A. and GHADERI, N. 2019. Iron nanoparticles and potassium silicate interaction effect on salt-stressed grape cuttings under in vitro conditions: a morphophysiological and biochemical evaluation. In Vitro Cellular & Developmental Biology - Plant, 55(5): 510-518. DOI: 10.1007/s11627-019-09988-0 Go to original source...
  5. LIM, M. Y., LEE, E. J., JANA, S., SIVANESAN, I. and JEONG, B. R. 2012. Effect of Potassium Silicate on Growth and Leaf Epidermal Characteristics of Begonia and Pansy Grown in Vitro. Korean Journal of Horticultural Science and Technology, 30(5): 579-585. DOI: 10.7235/hort.2012.12062 Go to original source...
  6. LIŠKOVÁ, D., KOLLÁROVÁ, K., KUČEROVÁ, D., VATEHOVÁ, Z., ZELKO, I., LUX, A. and VAN STADEN, J. 2016. Alternatives to improve long-term cultures of Harpagophytum procumbens in vitro. South African Journal of Botany, 104: 55-60. DOI: 10.1016/j.sajb.2015.10.008 Go to original source...
  7. MA, J. F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1): 11-18. DOI: 10.1080/00380768.2004.10408447 Go to original source...
  8. MANTOVANI, C., PIVETTA, K. F. L., DE MELLO PRADO, R., DE SOUZA, J. JR., NASCIMENTO, C. S., NASCIMENTO, C. S. and GRATÃO, P. L. 2020. Silicon toxicity induced by different concentrations and sources added to in vitro culture of epiphytic orchids. Scientia Horticulturae, 265: 109272. DOI: 10.1016/j.scienta.2020.109272 Go to original source...
  9. MÁTHÉ, C., MOSOLYGÓ, Á., SURÁNYI, G., BEKE, A., DEMETER, Z., TÓTH, V. R., BEYER, D., MÉSZÁROS, I. and M-HAMVAS, M. 2012. Genotype and explant-type dependent morphogenesis and silicon response of common reed (Phragmites australis) tissue cultures. Aquatic Botany, 97(1): 57-63. DOI: 10.1016/j.aquabot.2011.11.005 Go to original source...
  10. PETRICCIONE, M., CIARMIELLO, L., BOCCACCI, P., DE LUCA, A. and PICCIRILLO, P. 2010. Evaluation of 'Tonda di Giffoni' hazelnut (Corylus avellana L.) clones. Scientia Horticulturae, 124(2): 153-158. DOI: 10.1016/j.scienta.2009.12.019 Go to original source...
  11. RODRIGUES, F. A., REZENDE, R. A. L. S., SOARES, J. D. R., RODRIGUES, V. A., PASQUAL, M. and SILVA, S. 2017. Application of silicon sources in yam (Dioscorea spp.) micropropagation. Australian Journal of Crop Science, 11(11): 1469-1473. DOI: 10.21475/ajcs.17.11.11.pne685 Go to original source...
  12. SAHEBI, M., HANAFI, M. M. and AZIZI, P. 2016. Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology - Plant, 52(3): 226-232. DOI: 10.1007/s11627-016-9757-6 Go to original source...
  13. SAHEBI, M., HANAFI, M. M. and AZIZI, P. 2016. Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology - Plant, 52(3): 226-232. DOI: 10.1007/s11627-016-9757-6 Go to original source...
  14. SIVANESAN, I., SON, M. S., LEE, J. P. and JEONG, B. R. 2010. Effects of silicon on growth of Tagetes patula L. 'Boy Orange' and 'Yellow Boy' seedlings cultured in an environment controlled chamber. Propagation of Ornamental Plants, 10(3): 136-140.
  15. SIVANESAN, I. and JEONG, B. R. 2014. Silicon Promotes Adventitious Shoot Regeneration and Enhances Salinity Tolerance of Ajuga multiflora Bunge by Altering Activity of Antioxidant Enzyme. The Scientific World Journal, 2014: 521703. DOI: 10.1155/2014/521703 Go to original source...
  16. SIVANESAN, I., SONG, J. Y., HWANG, S. J. and JEONG, B. R. 2010. Micropropagation of Cotoneaster wilsonii Nakai-a rare endemic ornamental plant. Plant Cell, Tissue and Organ Culture (PCTOC), 105(1): 55-63. DOI: 10.1007/s11240-010-9841-2 Go to original source...
  17. SOARES, J. D. R., VILLA, F., RODRIGUES, F. A. and PASQUAL, M. 2013. Concentrations of silicon and GA3 in in vitro propagation of orchids under natural light [in Portuguese: Concentrações de Silício e GA3 na Propagação in vitro de Orquídea em Condição de Luz Natural]. Scientia Agraria Paranaensis, 12(4): 286-292. DOI: 10.18188/1983-1471/sap.v12n4p286-292 Go to original source...
  18. SOARES, J. D. R., PASQUAL, M., RODRIGUES, F. A., VILLA, F. and DE ARAUJO, A. G. 2011. Silicon sources in the micropropagation of the Cattleya group orchid [in Portuguese: Fontes de silício na micropropagação de orquídea do grupo Cattleya]. Acta Scientiarum. Agronomy, 33(3): 503-507. Go to original source...
  19. SOARES, J. R., PASQUAL, M., DE ARAUJO, A. G., DE CASTRO, E. M., PEREIRA, F. J. and BRAGA, F. T. 2012. Leaf anatomy of orchids micropropagated with different silicon concentrations. Acta Scientiarum Agronomy, 34(4): 413-421. DOI: 10.4025/actasciagron.v34i4.15062 Go to original source...
  20. SOUNDARARAJAN, P., MANIVANNAN, A., PARK, Y. G., MUNEER, S. and JEONG, B. R. 2015. Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus 'Tula'. Horticulture, Environment, and Biotechnology, 56(2): 233-239. DOI: 10.1007/s13580-015-0111-4 Go to original source...
  21. SOUNDARARAJAN, P., SIVANESAN, I., JO, E. H. and JEONG, B. R. 2013. Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Horticulture, Environment, and Biotechnology, 54(4): 311-318. DOI: 10.1007/s13580-013-0118-7 Go to original source...
  22. WILKINSON, J. 2005. Nut Grower's Guide. Collingwood, Vic.: Landlinks Press. Go to original source...
  23. ZHUO, T. S. 1995. The Detection of the Accumulation of Silicon in Phalaenopsis (Orchidaceae). Annals of Botany, 75(6): 605-607. DOI: 10.1006/anbo.1995.1065 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.