Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66(3), 691-700 | DOI: 10.11118/actaun201866030691

Application of Nitrogen Fertilizers and its Effect on Timeliness of Fertilizers Decomposition Resulting in Lost of Nitrogen Through Nitrous Oxide Emissions from Soil

Koloman Krištof1, Tomáš Šima1, Ladislav Nozdrovický1, Ján Jobbágy1, Jan Mareček2, Vlastimil Slaný2
1 Department of Machines and Production Biosystems, Faculty of Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel Univeresity in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

Fertilizers are an important tool to maintain soil fertility and as an enhancement for the efficient crop production. The system of fertilizers application affects the final dose and commonly causes local overdosing or insuficient spatial distribution of fertilizers which are a very important source of nitrous oxide emissions (N2O) from the soil into the atmospher observation of such phenomenon are among the key factors defining environmental impacts of agriculture. A study was conducted to observe the effect of application dose of fertilizer on N2O emission from the soil. CAN (Calcium ammonium nitrate - consist of 27 % nitrogen) was spread by a fertiliser spreader Kuhn Axera 1102 H-EMC aggregated with a tractor John Deere 6150 M. Incorporation of fertilizer into the soil was done by power harrow Pöttinger Lion 302. The application dose was set at 0, 100, 200 and 300 kg.ha-1 while monitoring points were selected at the base of this application doses in respective places. Measurements were conducted at time intervals 7, 14, 21 and 28 days after fertiliser application and following incorporation. Nitrous oxide emissions were measured by field gas monitor set INNOVA consisting of a photoacoustic gas monitor INNOVA 1412 and a multipoint sampler INNOVA 1309. Statistically significant differences was found among time intervals and among the application dose (p > 0.05). It was observed that the application dose of selected fertilizers has the direct effect on nitrous oxide (N2O) emissions released from soil into the atmosphere. An increase of greenhouse gas emissions was observed in range from 0.83 to 152.33 %. It can be concluded that the local overdose of fertilizers negatively affects environmental impact of agricultural practices at greenhouse gas emissions (GHGs).

Keywords: greenhouse gas emissions, nitrous oxide, fertiliser, fertiliser spreader, application dose
Grants and funding:

The paper reflects the results obtained within the research project VEGA 1/0718/17: Study about the effect of technological parameters of the surface coating in agricultural and forestry techniques for qualitative parameters, safety and environmental acceptability.

Published: June 28, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Krištof, K., Šima, T., Nozdrovický, L., Jobbágy, J., Mareček, J., & Slaný, V. (2018). Application of Nitrogen Fertilizers and its Effect on Timeliness of Fertilizers Decomposition Resulting in Lost of Nitrogen Through Nitrous Oxide Emissions from Soil. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis66(3), 691-700. doi: 10.11118/actaun201866030691
Download citation

References

  1. AMBUS, P., SKIBA, U., BUTTERBACH-BAHL, K. and SUTTON, M. 2011. Reactive nitrogen and greenhouse gas flux interactions in terrestial ecosystems. Plant and Soil, 343(1 - 2): 1-3. DOI: 10.1007/s11104-011-0777-z Go to original source...
  2. AMBUS, P., ZECHMEISTER-BOLTENSTERN, S. and BUTTERBACH-BAHL, K. 2006. Sources of nitrous oxide emitted from European forrest soils. Biogeosciences, 3: 135-145. DOI: 10.5194/bg-3-135-2006 Go to original source...
  3. BOUWMAN, A. F. 1996. Direct emissions of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46(1): 53-70. DOI: 10.1007/BF00210224 Go to original source...
  4. DUSLO. 2010. Calk ammonium nitrate - Properties of CAN 27 fertilizer. DUSLO. [Online]. Available at: www.duslo.sk [Accessed: 2016, October 25].
  5. DING, W., YU, H., CAI, Z., HAN, F. and XU, Z. 2010. Responses of soil respiration to N fertilization in a loamy soil under maize cultivation. Geoderma, 155(3 - 4): 381-389. DOI: 10.1016/j.geoderma.2009.12.023 Go to original source...
  6. DUBEŇOVÁ, M., GÁLIK, R. and MIHINA, Š. 2011. Interim results of monitoring of greenhouse gases emissions in the pigs housing [in Slovak: Priebežné výsledky monitorovania emisií sklenníkových plynov v objektoch pre ošípané]. In: Mendeltech International 2011: Proceedings of scientific papers. Brno: Mendel University in Brno, pp. 3843.
  7. EICHNER, M. J. 1990. Nitrous oxide emissions from fertilized soils: Summary of available data. Journal of Environmental Quality, 19: 272-280. DOI: 10.2134/jeq1990.00472425001900020013x Go to original source...
  8. FANG, Q., YU, Q., WANG, E., CHEN, Y., ZHANG, G., WANG, J. and LI, L. 2006. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant and Soil, 284(1 - 2): 335-350. DOI: 10.1007/s11104-006-0055-7 Go to original source...
  9. FULTON, J. P., SHEARER, S. A., HIGGINS, S. F., HANCOCK, D. W. and STOMBAUGH, T. S. 2005. Distribution pattern variability of granular VRT applicators. Transactions of the American Society of Agricultural Engineers, 48(6): 2053-2064. DOI: 10.13031/2013.20082 Go to original source...
  10. HE, F. F., JIANG, R. F., CHEN, Q., ZHANG, F. S. and SU, F. 2009. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollution, 157: 1666-1672. DOI: 10.1016/j.envpol.2008.12.017 Go to original source...
  11. LUMASENSE TECHNOLOGIES. 2007. Innova devices. LumaSense Technologies. [Online]. Available at: www.lumasenseinc.com [Accessed: 2016, October 25].
  12. IPCC. 2007a. Climate Change 2007: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  13. IPCC. 2007b. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. Geneva, Switzerland: IPCC.
  14. IPCC. 2014. Climate Change 2014: Synthesis Report. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.
  15. JIANG-GANG, H., YONG-LI, Z., HONG-YING, B., DONG, Q., JIN-YU, C. and CHUN-DU, W. 2007. N2O emissions under different moisture and temperature regimes. Bulletin of Environmental Contamination and Toxicology, 78: 284-287. DOI: 10.1007/s00128-007-9118-6 Go to original source...
  16. JONES, S. K., REES, R. M., SKIBA, U. M. and BALL, B. C. 2007. Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland. Agriculture, Ecosystems & Environment, 121(1 - 2): 74-83. DOI: 10.1016/j.agee.2006.12.006 Go to original source...
  17. KAJANOVIČOVÁ, I., LOŽEK, O., SLAMKA, P. and VÁRADY, T. 2011. Balance of nitrogen in integrated and ecological farming system on soil [in Slovak: Bilancia dusíka v integrovanom a ekologickom systéme hospodárenia na pôde]. Agrochémia, 51(3): 7-11.
  18. KRIŠTOF, K., ŠIMA, T., NOZDROVICKÝ, L. and FINDURA, P. 2014. The effect of soil tillage intensity on carbon dioxide emissions released from soil into the atmosphere. Agronomy Research, 12(1): 115-120.
  19. LIN, S., IQBAL, J., HU, R. G. and FENG, M. L. 2010. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems & Environment, 136: 40-48. DOI: 10.1016/j.agee.2009.11.005 Go to original source...
  20. LOUBET, B., LAVILLE, P., LEHUGER, S., LARMANOU, E., FLÉCHARD, C., MASCHER, N., GENERMONT, S., ROCHE, R., FERRARA, R. M., STELLA, P., PERSONNE, E., DURAND, B., DECUQ, C., FLURA, D., MASSON, S., FANUCCI, O., RAMPON, J.-N., SIEMENS, J., KINDLER, R., GABRIELLE, B., SCHRUMPF, M. and CELLIER, P. 2011. Carbon, nitrogen and Greenhouse gases budgets over a four years crop rotation in northern France. Plant and Soil, 343(1-2): 109-137. DOI: 10.1007/s11104-011-0751-9 Go to original source...
  21. LUDWIG, B., JÄGER, N., PRIESACK, E. and FLESSA, H. 2011. Application of the DNDC model to predict N2O emissions from sandy arable soils with differing fertilization in a long-term experiment. Journal of Plant Nutrition and Soil Science, 174: 350-358. DOI: 10.1002/jpln.201000040 Go to original source...
  22. MACÁK, M. and KRIŠTOF, K. 2016. The effect of granulometric structure and moisture of fertilizer on its static strength. Research in Agricultural Engineering, 62: S34-S43. Go to original source...
  23. MAPANDA, F., WUTA, M., NYAMANGARA, J. and REES, R. M. 2011. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant and Soil, 343(1 - 2): 67-81. DOI: 10.1007/s11104-011-0753-7 Go to original source...
  24. MIAO, Y., STEWART, B. A. and ZHANG, F. 2011. Long-term experiments for sustainable nutrient management in China. A review. Agronomy for Sustainable Development, 31(2): 397-414. DOI: 10.1051/agro/2010034 Go to original source...
  25. OLIESLAGERS, R., RAMON, H. and DE BAERDEMAEKER, J. 1996. Calculation of fertilizer distribution patterns from a spinning disc spreader by means of a simulation model. Journal of Agricultural Engineering Research, 63(2): 137-152. DOI: 10.1006/jaer.1996.0016 Go to original source...
  26. PANG, X. B., MU, Y. J., LEE, X. Q., FANG, S. X., YUAN, J. and HUANG, D. K., 2009. Nitric oxides and nitrous oxide fluxes from typical vegetables cropland in China: Effects of canopy, soil properties and field management. Atmospheric Environment, 43: 2571-2578. DOI: 10.1016/j.atmosenv.2009.02.016 Go to original source...
  27. PARISH, R.L. 2002. Rate setting effects on fertilizer spreader distribution patterns. Applied Engineering in Agriculture, 18(3): 301-304. Go to original source...
  28. PFAB, H., PALMER, I., BUEGGER, F., FIEDLER, F., MÜLLER, T. and RUSER, R. 2012. Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agriculture, Ecosystems & Environment, 150: 91-101. DOI: 10.1016/j.agee.2012.01.001 Go to original source...
  29. RAMIREZ, K. S., CRAINE, J. M. and FIERER, N. 2010. Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biology and Biochemistry, 42(12): 2336-2338. DOI: 10.1016/j.soilbio.2010.08.032 Go to original source...
  30. RANUCCI, S., BERTOLINI, T., VITALE, L., DI TOMMASI, P., OTTAIANO, L., OLIVA, M., AMATO, U., FIERRO, A. and MAGLIULO, V. 2011. The influence of management and environmental variables on soil N2O emissions in a crop system in Southern Italy. Plant and Soil, 343(1 - 2): 83-96. DOI: 10.1007/s11104-010-0674-x Go to original source...
  31. RAVISHANKARA, A. R., DANIEL, J. S. and PORTMANN, R. W. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949): 123-125. DOI: 10.1126/science.1176985 Go to original source...
  32. RUSER, R., FLESSA, H., SCHILLING, R., BEESE, F., MUNCH, J. C. 2001. Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems, 59(2): 177-191. DOI: 10.1023/A:1017512205888 Go to original source...
  33. SENBAYRAM, M., CHEN, R., BUDAI, A., BAKKEN, L. and DITTERT, K. 2012. N2O emissions and the N2O / (N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems & Environment, 147: 4-12. DOI: 10.1016/j.agee.2011.06.022 Go to original source...
  34. SKIBA, U., SMITH, K. A. and FOWLER, D. 1993. Nitrification and denitrification as sources on nitric oxide and nitrous oxide in a sandy loam soil. Soil Biology and Biochemistry, 25(11): 1527-1536. DOI: 10.1016/0038-0717(93)90007-X Go to original source...
  35. SKIBA, U., FOWLER, D. and SMITH, K. A. 1997. Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, control and mitigation options. Nutrient Cycling in Agroecosystems, 48: 75-90. DOI: 10.1023/A:1009734514983 Go to original source...
  36. SKIBA, U. and SMITH, K. A. 2000. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere, 2: 379-386. Go to original source...
  37. SKIBA, U., SOZANSKA, M., METCALFE, S. and FOWLER, D. 2001. Spatially disaggregated inventories of soil NO and N2O emissions for Great Britain. Water, Air and Soil Pollution, 1(5 - 6): 109-118. DOI: 10.1023/A:1013178316774 Go to original source...
  38. ŠIMA, T. 2014. Research of the environmental effects of the fertilizer spreader work quality. PhD thesis. Nitra: SUA in Nitra.
  39. ŠIMA, T., NOZDROVICKÝ, L., KRIŠTOF, K., DUBEŇOVÁ, M., KRUPIČKA, J. and KRÁLIK, S. 2012. Method for measuring of N2O emissions from fertilized soil after the using of fertilizer spreader. Poljoprivredna tehnika, 37: 51-60.
  40. ŠIMA, T., KRIŠTOF, K., DUBEŇOVÁ, M., NOZDROVICKÝ, L., KRUPIČKA, J. and CHYBA, J. 2013a. Sampling probe for field measurement of emissions reselased from soil into the atmosphere [in Czech: Sonda na polní měření emisí uvolňovaných z půdy do atmosféry]. Utility pattern No. 25289. Prague: Industrial Property Office, 2013. 2 p.
  41. ŠIMA, T., KRIŠTOF, K., DUBEŇOVÁ, M., NOZDROVICKÝ, L., KRUPIČKA, J. and CHYBA, J. 2013b. Sampling probe for field measurement of emissions released from soil into the atmosphere [in Czech: Odběrná sonda na laboratorní měření emisí uvoľňovaných z půdy do atmosféry]. Utility pattern No. 25348, Prague, Industrial Property Office, 2013. 2 p.
  42. ŠIMA, T., NOZDROVICKÝ, L., KRIŠTOF, K., DUBEŇOVÁ, M. and KRUPIČKA, J. 2014a. Impact of the quality of work of fertiliser spreader on nitrous oxide emissions released from soil to the atmosphere. Agronomy Research, 12(1): 171-178.
  43. ŠIMA, T., NOZDROVICKÝ, L., KRIŠTOF, K. and KRUPIČKA, J. 2014b. Impact of the size of nitrogen fertiliser application rate on N2O flux. Research in Agricultural Engineering, 60(1): 24-29. DOI: 10.17221/81/2012-RAE Go to original source...
  44. VAN CLEEMPUT, O. and SAMATER, A. H. 1996. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertilizer Research, 45(1): 81-89. DOI: 10.1007/BF00749884 Go to original source...
  45. VERMA, A., TYAGI, L., YADAV, S. and SINGH, S.N. 2006. Temporal changes in N2O efflux from cropped and fallow agricultural fields. Agriculture, Ecosystems & Environment, 116: 209-215. DOI: 10.1016/j.agee.2006.02.005 Go to original source...
  46. VIRK, S. S., MULLENIX, D. K., SHARDA, A., HALL, J. B., WOOD, C. W., FASINA, O. O., MCDONALD, T. P., PATE, G. L. and FULTON, J. P. 2013. Case study: Distribution uniformity of a blended fertilizer applied using a variable-rate spinner-disc spreader. Applied Engineering in Agriculture, 29(5): 627-636. Go to original source...
  47. WALTERS, R.W., JENQ, R. R. and HALL, S. B. 2000. Evaluating farmer defined management zone maps for variable rate fertilizer application. Precision Agriculture, 2(2): 201-215. Go to original source...
  48. WILLIAMS, E. J., HUTCHINSON, G. L. and FEHSENFELD, F.C. 1992. NOx and N2O emissions from soil. Global Biogeochemical Cycles, 6(4): 351-388. DOI: 10.1029/92GB02124 Go to original source...
  49. ZHU, T., ZHANG, J. and CAI, Z. 2011. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant and Soil, 343(1): 313-327. DOI: 10.1007/s11104-011-0720-3 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.