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Abstract

This paper deals with the estimation of the probability distribution of the category random variable
from its observed values. The gradient estimation presented is based on the f-quasi-norm term.
The gradient estimation tends to move away from the empirical distribution towards a uniform
distribution. For this reason, it is called the pessimistic estimate. The paper deals with both point and
interval estimates. The bootstrap method is used for interval estimates. The theoretical results are
illustrated using specific economic data.
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INTRODUCTION

The estimation of probability distribution from
the observed random sample x, i = 1, .., n, where
n > mis a basic practical task in stochastic modeling
of a categorical random variable X which takes
a finite number of different values xj*, j=1.,m
where m> 2.

A different gradient estimation p(t) of a discrete
random variable is presented in this paper, which
can be called pessimistic in a certain sense. The
estimate is based on the concept of f-divergence
D, (Vajda, 2004), which is used to measure the
"distance" of two discrete distributions within the
same dimension. Using the f-divergence term, the
f-quasi-norm of distribution p is introduced as
a "distance” D(p, p,) from the uniform distribution p,
(KarpiSek et al., 2007). The uniform distribution was
chosen because it has the maximum uncertainty in
a given probability space, for example in the sense
of Shannon entropy.
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If we move along the trajectory of the greatest
slope of the used f-quasinorm from the observed
distribution to the uniform distribution, the gradient
estimate is constructed as the distribution nearest
to the even distribution, while the Goodness of Fit
Test does not yet reject null hypothesis that there
is no significant difference between the observed
and the estimated distribution. The problem leads
to the solution of a system of ordinary differential
equations of the first order, which are constructed
in this paper for the quadratic f-quasinorm for
which this system is linear. The bootstrap method
is used to improve gradient estimates for small data
sets and to construct interval estimates.

MATERIALS AND METHODS
In what follows we use the following concepts
(KarpiSek et al., 2007; Karpisek et al., 2008; KarpiSek
and Neradova, 2014).
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Let S=ipeR":Vp; 20,2711[9/ :1} be the set of all
discrete probability distributions on Q. We define
a quasi-norm of p e S as the f-divergence D(p, p,)
where

and say that the function f'generates the quasi-norm
D(p,pyons.

This article focuses on the quadratic f-quasinorm,
which we obtain from y?-divergence ¥*(p, q) which
is generated by the function flu) = (u - 1)* (KarpiSek
et al.,, 2008)

1 —m
Dy :0o) = K(p,po) =37 (mp; -1

The idea of estimating the distribution p from
observed values of variable X is based on finding
a distribution in S that is the closest to

:[l lj
Do T m ’

which can be arrived at from the empirical
distribution

(ot

by a procedure which, in a certain sense is the
fastest. This can be done by suitably minimizing
a chosen quasi-norm D(p, p,) and looking for the
distribution p on the steepest-descent contour in S.
As the gradient estimate of a probability
distribution p € S based on a sample distribution

(b33

we take to be such a probability distribution p(¢) € S
that

%p(t) = —grade(p(t),po) for vt e [0; o0),

p(0)= I [flfm]

n n n

If a function flu) which generates quasi-norm
D{p, p,) to S, has the necessary properties for
the generating function and has a continuous
derivative f(u) for Yu e (0; ), then there is
a gradient estimate p(f) = (p,(®), .., p,(t)) where
Vvt e [0; ) of the probability distribution p € S. Its
components p,(®), ..., p,,(t) are a particular solution
of the system of first-order ordinary differential
equations of the first order, which is non-linear in
general and whose solution requires application of

a numerical method. The parameter ¢ is understood
as a parameter of the solution curve. An exception
for which an explicit solution can be found is the
quadratic quasi-norm for which the components of
the gradient estimate p(t) = (p,(®), ..., p, (1) from the
sample distribution

(LL Lm)

T e
nn n

are, for Vvt € [0; ) a particular solution of the non-
homogeneous linear system of first-order ordinary
differential equations (LSODE1) with constant
coefficients and constant right-hand sides

p,'(©) =-4mp,(©) - 2mp,(0) - ... - 2mp,_,(O) + 2m,

p, ) =-2mp, () - 4mp,(O) - ... - 2mp, () + 2m,
D, (0 =-2mp,(6) - 2mp,() - ... - 4mp, (O) + 2m,

with the initial conditions

mm:%mmﬁ%mmem:ﬁ4

and

P.(0=1-Y""p, () for ¥t e [0; o).

The gradient estimate p(t) has the components

1
= cemx + c.e2mt + —
pl( ) 1 2 m
p ®O= c p2m2t + c.e2mt + l)
2 1 3 m
1
D, = c g2 +C, e —
m
1
_ -2m?2 g . =
D, (0 = c e’ -c,em -C, e+ -
1
p, ()= -(m-1)ce?* +—
m
where
il Tna )
c=n_n____n 1
! m-1 m
(m_z)fl_é ..... fmz_fm-1
c,=—1Nn n n_n_
m-1
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The gradient estimate so obtained is an estimate
with a single parameter of the probability
distribution. A suitable value ¢, can be found by
a goodness-of-fit test. When using the Pearson test,
t, is a root of the non-linear equation

1w [}
Hz;ﬂ r

-n= 2 R
pj(t) Xl—(x

where the left-hand side is the chosen testing
criterion and %, is a (1 - a)-quantile of the chi-
squared distribution with m - 1 degrees of freedom.
The problem here is to find a value of ¢ that still does
not lead to rejecting the hypothesis of p() being
a good fit at a significance level of a.

All the gradient estimates p(t,) for vVt € [0; ¢,] meet
the chosen testing criterion at a significance level
of at least a and the estimate p(t)) being the “worst”
of all estimates, can be referred to as a pessimistic
gradient estimate.

In the event that we would also like to obtain an
interval estimate it is possible to utilize the bootstrap
method. From random sample (x,, .., X)) a new
random sample (xj, .., X)) with repetition (with
return) was created. We selected new bootstrap
samples from the statistic sample observed values x,
by random draw with replacement.

The random sample so obtained is denoted as
a bootstrap sample. It is possible to create the
bootstrap interval estimate in the following way
(Efron and Tibshirani, 1994).

Let X be the mean and s be the variance of
original sample (x,, ..., X,), X, is the mean and sii is
the variance of the i-bootstrap sample, i = 1, ..., B,
then
1. The bootstrap interval estimate of the mean E(X)

with a confidence level 1 - a is

I. Empirical and estimated frequencies for t, = 0.0565

<x_

where t,, is the P-quantile of the sample
(t,p - 4,5 and

s _ S
t Xt ),
b1 n-1 bJZ\/n—1>

Xy - X .
t, =—2"+/n-1,i=1, .., B.

Sb,z
2. The bootstrap interval estimate of the variance
D(X) with a confidence level 1 - ais
ns* ns’
2 2
Xb,yﬁ Xb,g
2 2
where xj, is the P-quantile of the sample
G, -+ Xp) and
2
s NSy . _
Api = Szl, 1= 1, . B.
3. The bootstrap interval estimate of the standard

deviation o(X) with a confidence level 1 - a is
calculated as the square root of the variance D(X).

RESULTS AND DISCUSSION

The Pareto diagram is an important tool for
managerial decision-making. The diagram helps
to separate important factors from less important
ones. Applying a gradient estimate reduces the
difference between the factors. If the differences
between the factors is sufficient, the result of
the Pareto analysis remains the same as that for
empirical frequencies. Conversely, if the difference
is not too great, the Pareto analysis will point to
there being more important factors.

Application of a Pessimistic Gradient
Estimate

In a manufacturing plant, an inconsistency in the
output products was observed. In order to improve
the quality of production, the types and numbers
of defects of individual products were noted over
one month. To assess the types of defects which
affect the product consistency the most, the Pareto
analysis was performed. It was based on both the
output quality inspection data and data estimated

Defect A B C D E F G
Frequencies of defects 128 91 36 23 15 12 9
Cumulative frequencies 41% 70% 81% 89% 93% 97% 100%
Estimates of rel. frequencies ~ 0.3535 0.2580 0.1369 0.0828 0.0637 0.0573 0.0478
Estimated frequencies 111 81 43 26 20 18 15
Cumulative frequencies 35% 61% 75% 83% 89% 95% 100%
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using Quadratic quasi-norm. The results are shown
in a Tab. I and in the Fig. 1.

If data estimated using a quadratic quasi-norm
are evaluated using a Pareto analysis, the company
should eliminate defects A-D to improve production.
The estimations given are point estimations.
The bootstrap method can be to obtain interval
estimations. The procedure is as follows. A thousand
bootstrap samples are generated and the estimate
is calculated from each resample using a quadratic
quasi-norm. Each estimate is characterized by
a parameter t. The value of t ranges between 0 and 1.

We determine from these set of parameters value
t, (pessimistic estimate). The probabilities p, were
calculated from value ¢, = 0.565. Their numerical
characteristics are shown in Tab. IL

Subsequently, the bootstrap was performed
again, from which the interval estimate of the
mean, variance and standard deviation for the
probabilities p, was obtained. These are estimates
of individual probabilities with the confidence level
0.95. The simultaneous estimate is unknown. The
results are shown in Tab. III.

1: Empirical and estimated frequencies

II: Numerical characteristics of bootstrap samples of probabilities

Def. Mean Median Min. Max. Lower Q. Upper Q. Variance Std. Dev.
A 0.371504 0.372358 0.291666 0.466385 0.352341 0.391046 0.000761 0.027584
B 0.274932 0.274172 0.199755 0.361052 0.258063 0.290117 0.000559 0.023639
C 0.109539 0.109735 0.059762 0.174739 0.098138 0.118811 0.000269 0.016407
D 0.082311 0.082949 0.044394 0.117565 0.074330 0.091145 0.000155 0.012431
E 0.072207 0.071751 0.023652 0.109717 0.062991 0.080943 0.000167 0.012909
F 0.048943 0.048402 0.018613 0.086108 0.040560 0.056575 0.000129 0.011343
G 0.040566 0.040082 0.013143 0.072303 0.033348 0.046859 0.000092 0.009577
III: Bootstrap 95% confidence intervals of probabilities
BOOTSTRAP 95% CONFIDENCE INTERVALS
Defect MEAN VARIANCE STD. DEV.
0.369848 0.373165 0.000721 0.000856 0.026860 0.029256
B 0.272943 0.276847 0.000120 0.000151 0.010934 0.012272
C 0.108476 0.110618 0.000256 0.000315 0.015994 0.017759
D 0.081613 0.083183 0.000145 0.196403 0.012027 0.443174
E 0.071095 0.073498 0.000158 0.000187 0.012560 0.013676
F 0.048352 0.050059 0.000122 0.000144 0.011028 0.011987
G 0.039441 0.041377 0.000086 0.000101 0.009270 0.010061
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CONCLUSION

There are many practical situations where it is necessary to estimate the probability distribution of
observed categorical variables. They occur in industry and in empirical research, in life-time testing,
fault diagnosis and in social surveys. The article deals with the current issue of obtaining estimates
of the parameters of the distribution of categorical random variables. The initial apparatus is the
f-divergence of discrete probability models. The concept of a quasinorm is derived from them, i.e. the
divergence of a specific distribution estimate from a discrete uniform distribution.

Due to the variability of the parameter ¢ choice from the interval [0; ¢ ], they are sufficiently flexible
and allow an approximation to the observed empirical distribution. It is possible to choose different
f-quasinorms and obtain other variants of pessimistic estimates (KarpiSek et al., 2008). However, this
generally leads to a nonlinear system of differential equations and requires its numerical solution.
This quadratic f-quasinorm is the only one that corresponds to a linear system of differential equations
with constant coefficients and whose solution can be obtained without numerical methods.

By solving the aforementioned SODR1 we get estimates directly of the probabilities being sought.
Since f-quasinorms are svmmetric functions, it is possible to replace condition pm(t):1—zi":1pi(t)
with condition p,()=1-Y""  p,(t). The numbering of categorical variables can in fact be arbitrary.
Another benefit for this issue is the use of bootstrapping, especially in the construction of interval
estimates. This method is universal and is applicable to other quasinorms as well as to other types
of discrete probability distribution estimates. In the case of other quasinorms, the calculation is
more difficult, because the nonlinear system of differential equations must be solved again for each
bootstrap selection. The generation of bootstrap files and the necessary calculations were performed
in software R.

Gradient estimates based on f-quasinorms have a non-traditional and specific character, but
a number of other tasks have demonstrated their practical applicability, e.g. in category analysis, with
applications also outside sociological research (Karpisek and Neradova, 2014; Lacinova et al., 2011).
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