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Abstract

Changes in maintenance approaches of more complex vehicles and related systems are closely 
associated with the development of motor vehicles and the ever increasing demand for mobility. 
Ever since the production of the first motorized vehicles started, engineers have been addressing 
maintenance issues, which aim to maximize the reliability of vehicles and eliminate unwanted 
failures. The purpose of this article is to show how proactive maintenance can be performed. Proactive 
maintenance is based on on-line diagnostic systems in motor vehicles. In this paper, the authors 
describe the possibilities of obtaining operational data on automatic transmission from on-board 
diagnostics and its subsequent processing. Furthermore, the article presents a model proposed for 
determining the amount of wear of individual machine parts in an automatic transmission. Finally, 
a comparison of the data from the proposed model and the data from the CAN bus is made. The 
authors show the possibility of access in the field of sustainability towards proactive maintenance 
and the effort to predict future wear of machine parts in an automatic transmission using modelling. 
In this case, Matlab & Simulink software was used, which is suitable for these processes. This 
approach to the sustainability of motor vehicles is in principle identical or very similar to the systems 
used under various designations in industry, aviation, computer science, etc. 

Keywords: proactive maintenance, simulation of automotive gearbox, prognostics, condition based 
maintenance, prognostics methods

INTRODUCTION
Even if maintenance is a necessity, maintenance 

has a negative image and suffers from a deficiency of 
understanding and respect. It is usually recognised 
as a  cost, a  necessary evil, not as a  contributor. 
Most people think that the role of maintenance is 
“to fix things when they break” but when things 
break down maintenance has failed (Blann, 2003). 
Moreover traditionally the scope of maintenance 
activities has been limited to the production 
vs. operation phase. But as the paradigm of 
manufacturing shift towards realizing a sustainable 
society, the role of maintenance has to change to 
take into account a life-cycle management oriented 
approach (Takata et  al., 2004) for enhancing the 

eco-efficiency of the product life (Voisin et al., 2010). 
In that way, maintenance has to be considered not 
only in production vs. operation phase but also in 
product design, product disassembly, and product 
recycling… (van Houten et al., 1998).

Generally, the motor vehicle is either in a usable 
state or an unusable state. Our goal is to keep the 
vehicle in a  usable state, which means avoiding 
breakdowns and limit states of the motor vehicle. 
This objective is to be achieved on the basis of 
the lowest cost of the vehicle's life cycle, while 
maintaining inherent vehicle reliability throughout 
the period of use. This is reflected in the individual 
maintenance approaches from the 1930s to the 
present.
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Condition based maintenance has come to the 
forefront in recent decades with the advancement 
of technical diagnostics. This is maintenance, which 
is based on monitoring the ongoing technical 
condition and the follow-up measures. Individual 
worn parts, parts at risk of failure or the whole 
groups are repaired or replaced in the optimal time. 
This means that the service life of the monitored 
components is fully utilized and the replacement 
takes place only when the component starts to 
exhibit abnormal behaviour but still performs its 
function. This maintenance system according to the 
technical condition can be divided into, as shown 
in Fig. 1:
a)	 predictive maintenance,
b)	 proactive maintenance.

Proactive maintenance is a preventive maintenance 
strategy that works to correct the root causes 
of failure and avoid breakdowns caused by 
underlying equipment conditions. The purpose of 
proactive maintenance is to see machine failures as 
something that can be anticipated and eliminated 
before they develop.

Proactive maintenance is considered the next 
higher level of maintenance. It is based entirely on 
previous predictive maintenance, which is further 
improved. Proactive maintenance requires the use of 
On Board Diagnostics (OBD) using the CAN data bus.

For more than half-century, the Box-Jenkins 
methodology using autoregressive moving average 
model (ARMA) linear models have dominated 
many areas of time series forecasting. In 1970, 
(Box et  al., 2015), made ARMA models popular by 
proposing a model building methodology involving 
an iterative three-stage process of model selection, 
parameter estimation and model checking. Recent 
explanations of the process e.g. (Makridakis 
et  al., 2008) often add a  preliminary stage of data 
preparation and a final stage of model application 
or forecasting (Rojas et al., 2008; Leitner and Figuli, 
2018; Chovanec, 2012).

In the aeronautical industry, health management 
and maintenance processes are among the main 
research topics for economical, ecological and 
industrial reasons (Inman et al., 2005; Vachtsevanos 

et al., 2006). However, the first challenge is to model 
industrial systems and their degradations. The 
variety and number of sources of uncertainty (e.g. 
forecast, complex system, unknown degradation 
process) encourage a probabilistic approach. System 
modelling can take various forms: macroscopic 
considerations (e.g. interacting components in or 
precise physical modelling (Daigle and Goebel, 2010; 
Guan et al., 2009). This paper adopts a probabilistic 
method which considers both standpoints: the 
Piecewise Deterministic Markov Processes (PDMPs) 
introduced by (Davis, 1993) and studied by 
(Jacobsen, 2006).

An interesting maintenance approach consists 
in using condition-based maintenance (CBM) 
to act on the system based on its current state 
and before its failure (Jardine et  al., 2006). In the 
framework of control-limit decision rules, the CBM 
decision depends on an indicator associated with 
some thresholds (Jardine et  al., 2006). It is often 
a  degradation indicator as in (Dieulle et  al., 2003). 
(Huynh et al., 2012) compare CBM strategies using 
degradation or age indicators.

A  third indicator appeared recently: the 
Remaining Useful Life (RUL) of the system (Saxena 
et al., 2010; Vachtsevanos et al., 2006). It represents 
the remaining time before a failure occurs.

Its definition ina CBM context remains unclear 
(Jardine et  al., 2006) for a  partial definition). 
Moreover, in the literature, the RUL is computed 
using data only (Jardine et  al., 2006), time-series 
forecasting (Yan et  al., 2007), neural networks 
(Zemouri et al., 2003) and (Yu et al., 2006) or neuro-
fuzzy systems (Wang et  al., 2004) but never using 
models nor physics of failure.

Simulations often incorporate analytical models 
of the bearings in the gearboxes. However, only 
the very simple shapes of the working surface of 
the bearing segments can be used for the analytical 
lubrication solution (Novotný et  al., 2019). Such 
a  model can incorporate the analytical solution to 
the Reynolds equation under the assumption of an 
infinitely long bearing presented by, for example, 
(Stachowiak and Batchelor, 2013). This theory 
can be further expanded; for example, (Liu and 
Mou, 2012) present an approach for the analytical 
solution, assuming the rectangular shape of the 
working surfaces.

MATERIALS AND METHODS

Telemetry Monitoring
The essence of telemetry is the wireless 

transmission of vehicle technical data. It is a process 
of measuring certain data and sharing data 
remotely without a direct physical connection. The 
basic prerequisite is that the vehicle is equipped 
with on-board diagnostics and a  CAN bus. When 
meeting these requirements in conjunction with 
maintenance we can talk about telemaintenance. 

 
 

 
 

  

1: Maintenance based on technical condition (Furch and 
Nguyen, 2016; Vachtsevanos et al., 2006)
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Transmission using a telecommunications network, 
radio or infrared signal may be used to send data. 
The data can be also sent via computer or telephone 
networks.

Modern vehicle tracking systems are designed 
to provide comprehensive vehicle information 
to several levels (operator information, service 
information, logistical support information, etc.). 
In companies that deal with transport or operate 
a  large number of motor vehicles, the emphasis is 
mainly on reducing operating and maintenance 
costs. In general, when the vehicle is in operation, 
it means that it is involved in generating profi ts. If 
the vehicle is idle or maintenance is in progress, the 
vehicle does not make a profi t. Therefore, the aim is 
to monitor the technical condition of the vehicle on-
line using on-board diagnostics and the CAN bus. 
In addition to this approach, attempts are made to 
create models for predicting the failure of complex 
systems, as shown in Fig. 2.

Possible Approaches to Signal Prediction, 
Processing and Analysis in Proactive 

Maintenance
Modern vehicle maintenance systems based on 

parameter monitoring from motor vehicle sensory 
networks are increasingly focusing on the forecasting 
options of technical conditions. Forecasting in 
the technical fi eld means the ability to predict the 
remaining useful life of specifi c components or 
subsystems of a  given unit, see Fig.  3. The forecast 
is evaluated by the degree of reliability. Modern 
maintenance systems aim to enable long-term 
prediction of failure development and to increase 
the reliability of such prediction by various methods. 
In this case it is called proactive maintenance.

In a  system based on the proactive maintenance 
principle, emphasis is placed on obtaining the 
maximum set of information, increasing the ability 
to detect failures and minimizing false failure 
alarms using on-board diagnostics. 

 
 

 

  
2: Design of data transmission from the CAN bus of a motor vehicle including proactive maintenance (Furch et al., 2017)
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3: Failure prediction depending on technical condition and time of operation (Furch et al., 2017)
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Modelling – Based Forecasting Methods
Modelling-based forecasting methods use 

simplifi ed processes that are subject to prediction. 
Models based on physical principle, autoregressive 
modelling, empirical methods and Kalman fi lter are 
used as prediction tools.

Modelling-based methods are used to elucidate the 
failure process of a part. Models based on physical 
principle can serve as a means of detecting critical 
component damage as a  function of operating 
conditions and evaluating cumulative eff ects over 
time of use. By extending the physical models by 
stochastic modelling methods, it is possible to use the 
model to evaluate the distribution of the remaining 
life of a  part as a  function of the uncertainties in 
partial properties of the components (strength, 
stress, lubrication conditions) for specifi c failures. 
Statistical representation of operational events 
serves as a  basis for calculating the frequency of 
failures in further operation.

Models Based on Physical Manifestations 
of Material Fatigue

In models that focus on material fatigue 
investigation, it is necessary to determine the origin 
of damage (fracture, crack) and its manifestations 
for eff ective forecasting. In the aerospace industry, 
attention is paid to models that are able to detect the 
propagation of cracks in the material and recognize 
their manifestations.

Fatigue cracks are typical of machine parts 
such as gears, shafts, and vehicle body parts and 
are infl uenced by a  number of factors (material 
properties, stress characteristics, temperature, 
lubrication, etc.). Due to the prognosis determination, 
crack propagation models can be divided into 
two categories, namely deterministic models and 
stochastic models. The basis for deterministic models 
investigating crack propagation in a material is the 
Paris-Erdogan relationship (Tomaszek et al., 2013):  



-1,1

= ( )

X,Y

mdl C K
dN

, (1)

where
l ............crack length, 
N ..........number of cycles, 
C, m .....material-dependent constants,
ΔK ........range of stress intensity factor.

Model parameters are usually determined using 
a  non-linear recursive least squares method with 
the so-called forgetting factor.

In stochastic crack propagation models, all 
parameters are taken as random variables. 
The resulting crack propagation equation has 
a  diff erential shape and simulations using Monte 
Carlo methods, neural networks and other methods 
are used as a  means for parameters estimation 
(Furch et al., 2017).

Autoregressive Moving-average Model ARMA 
and ARMAX 

In practice, there are many cases of complex 
systems where it is very diffi  cult or even impossible 
to derive dynamic models based on all the physical 
processes that aff ect the system. In similar cases, 
it is possible to use the simplifi ed basic model of 
the system and use the input and output data of 
the real system to determine additional required 
parameters of the model.

Data from the system are obtained by performing 
a  series of test measurements. The basic model of 
the system is set according to the input criteria of the 
system and is used for calculating the parameters. 
After calculating, model output data and system 
output data are verifi ed. The test loop is terminated 
if the last step (model verifi cation) gives satisfactory 
outputs. Otherwise, the loop is not terminated. The 
scheme of the loop is shown in Fig. 5.

A  simplifi ed scheme of the system is shown in 
Fig. 4. The input values of the system are determined 
as ut, the output values as yt, which represent the 
measured values. The model of this system can be 
expressed by the relationship (Lennart, 1999):

vt + a1vt-1 + … + ana
vt-na

= et + c1et-1 + … + cnc
et-nc

. (2)

4: Simplified scheme of the system (Vachtsevanos et al., 
2006)

5: Model test loop (Vachtsevanos et al., 2006)
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Autoregressive Moving-Average Models (ARMA) 
represent dynamic systems that are characterized 
by the dependence of the functions vt at time t on 
their previous values as well as on the time course 
of noise et up to time t.

Mathematically, the system can be expressed 
using coefficients that represent “unknown” model 
parameters and must be appropriately set to match 
the output behaviour of the model to the input/
output data of the system. The relation between 
inputs and outputs is defined by the model error 
equation (Lennart, 1999):

yt + a1yt-1 + … + ana 
yt-na

 = b1ut-1 + … + bnb
ut-nb

 + et.� (3)

Parameters (a1, a2, …, ana
, b1, …, bnb

) can be 
expressed using a  vector of unknown variables 
θ  =  [a1, a2, …, ana 

, b1, …, bnb
]T and after substituting 

into equation (3) we get:

yt = [-yt-1 - yt-2 … -yt-na
ut-1 … ut-nb

]θ + et = ht
Tθ + et,� (4)

where
ut	����������input data,
yt	����������output data,
et	�����������disturbance,
t	������������time,
h	�����������regression vector that contains all monitored 

data, including past values ut, yt.
The model error equation lacks the possibility 

to fully describe the properties of unmeasured 
values vt as required by the ARMA model, where 
it is necessary to know both the current and the 
previous noise values  et. The extended variant of 
the ARMA model under the name ARMAX describes 
the equation of model errors by the relationship 
(Lennart, 1999):

yt + a1yt-1 + … + ana 
yt-na

 = b1ut-1 + … + bnb
ut-nb

 + et +�

+ c1et-1 + … + cnc
et-nc

,� (5)

where the adjustable unknown parameters are 
given by the vector (Lennart, 1999):

θ = [a1 … ana
, b1, … bnb

, c1 … cnc
]T.� (6)

The ARMA, ARMAX models are used in a number 
of applications as a means of predicting the future 
state of the system, which is based on the monitoring 
of the previous data. Precisely for this reason they 
are used in forecasting systems in which one of the 
main objectives is to predict a failure and to follow 
the failure process.

Particle Filter Framework for Failure Prognosis
Bayesian estimation techniques are finding 

application domains in machinery fault diagnosis 
and prognosis of the remaining useful life of 
a  failing component/subsystem (Orchard et  al., 
2005). This method is used to accurately and reliably 
predict failures of parts that are based on particle 

filtration using known techniques that have been 
developed at the Institute of Technology in Georgia. 
For mathematical processing Bayesian estimates 
are used. They deal with the application of fault 
diagnostics in the field of mechanical engineering 
as well as detecting the remaining useful life 
of subsystems or individual components. This 
innovative approach to the use of the static-dynamic 
model and measurement model is applicable for the 
subsequent determination of the probability density 
of states, which is used to predict the occurrence of 
the system damage due to wear or its total failure.

Damage prediction and failure indicators result 
in gross uncertainty. Accurate determination of 
the failure time of a component or subsystem shall 
take into account critical state variables such as 
crack length, pitting, etc. in the form of random 
variables with associated probability distribution. 
Where the probability distribution has already 
been determined, other necessary attributes, such 
as confidence intervals, should continue to be 
envisaged. Based on the above facts, it is possible to 
solve a prognosis based on the recursive Bayesian 
estimation theory, which combines both the use 
of information obtained from probability models 
and the data measured by sensors that monitor the 
main wear parameters.

Long-term failure prediction is based on 
a  very accurate estimation of the current state 
of a  component (system) as well as a  model 
that describes the development of the damage. 
If damage is detected and isolated in the initial 
phase, it is advisable to perform measurements 
more frequently and analyze and process the data 
acquired from the sensors. Subsequently, the newly 
acquired data is added to the model, which allows 
for more accurate prediction of time to failure. We 
measure and verify the model until we determine 
the limit state of the component/system damage. 
To prevent catastrophic events (system failure), 
maintenance must be performed.

The available and recommended CBM/PHM 
sensors and the property extraction module allow 
sequential observation and measurement of 
damage evolution data zk at the current time k. The 
damage status can be described using the status 
and measurement models (Vachtsevanos et  al., 
2006) and (Orchard et al., 2005):

xk = fk(xk-1, ωk) ↔ p(xk|xk-1),� (7)

zk = hk(xk, vk) ↔ p(zk|xk),� (8)

where
xk	����������is failure state or size (such as crack size), 

variable conditions directly affecting the 
development of failure, 

ωk , vk	���are non-Gaussian noises, 
fk ,hk	������are nonlinear functions. 
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In the first part of the approach, the state 
estimation is performed, which can be described 
as an estimate of the current range or extent of the 
damage, as well as other important environmental 
variables. In the second part of this approach it is 
based on a  long-term forecast, resulting from an 
estimate of the extent of damage and a  model of 
damage development with parameters. The values 
are further refined throughout the observation 
period on the basis of the actual state of the 
observation. The innovative process of recursive 
integration is based on both the importance of 
sampling and the approximation of the distribution 
density function using Kernel functions. It is then 
applied to create the state forecast for the time 
interval (k + 1) to (k + p) (Vachtsevanos et al., 2006; 
Orchard et al., 2005):

...


 

  

k+p
k+p k k k j j kk pj=k

k+pN i i
k+p k k k k j j k k+pi j=k

p x z p x z p x x dx

p x z = w p x x p x x dx

1: 0: -1 + -1+1

( ) ( )
1: +1 -1 +1: -11 +2

( ) ( ) ( )

( ) ( ( )

,� (9)

:

 

   ( ) ( )
1 1 1 1 11 2

-1,1

( ) ( ) ( )
X,Y

k+pN i i
k+p :k k k+ k j j k+ k+p-i= j=k+

p x z w p x x p x x dx .

� (10)

Long-term prediction can be used to estimate 
the probability of failure during use. For this 
purpose, a  risk zone is designed, which is defined 
by its minimum hlb and maximum limit values Hup. 
The predicted confidence interval as well as the 
estimated time to failure (TTF) can be derived from 
the mean time to failure of the probability density 
function (Vachtsevanos et  al., 2006; Orchard et  al., 
2005):

 

...




 


  







k+p
k+p k k k j j kk pj=k

k+pN i i
k+p k k k k j j k k+pi j=k

N i i
TTF lb TTF up TTFi

p x z p x z p x x dx

p x z = w p x x p x x dx

p TTF H x H w

1: 0: -1 + -1+1

( ) ( )
1: +1 -1 +1: -11 +2

( ) ( )
=1

( ) ( ) ( )

( ) ( ( )

( ) = Pr .� (11)

The uncertainty of the forecast accuracy usually 
increases with the length of the forecasting period. 
To reduce the uncertainty of the failure forecast, 
which is based on particle filtering, a model capable 
of correcting the estimated time to failure is used. 
The model calculates the expression Cn, which 
consists of the difference between the current 
estimated time to failure and the previous time 
to failure as determined in the previous iteration 
step. After obtaining the correction expressions  p, 
a  linear regression model is constructed, which 
defines the relationship between the individual 
correction expressions that were used in the 
previous calculations. The constructed linear 
correction model is then used to estimate future 
corrections that would be used if the procedure had 
a wide sense stationary (WSS). Its use will improve 
the accuracy of long-term predictions.

Forecasting Methods Based on Probability
In situations where records of previous system 

failures are maintained, probability-based 
methods are often used for forecasting options. 
These methods require less detailed information 

than model-based methods because the necessary 
information for forecasting needs is contained 
in various probability density functions. The 
advantage is that the necessary information can 
be obtained from any system, regardless of its 
complexity, using the data for determining the 
probability density distribution.

Bayesian Probability Theory 
Bayesian theory forms the basis for a number of 

methods that deal with predicting the future state 
of an object based on known relevant information 
on the object. It is a way in which, after obtaining 
new information, indeterminate input data can be 
quantified by determining the likelihood of their 
occurrence. The calculations are based on the 
probability density function (Huynh et  al., 2012; 
Vachtsevanos et al., 2006):

fX,Y(x, y) = fX/Y(x/y)fY(y) = fY/X(y/x)fx(x),� (12)

where
fX,Y(x, y)	������������������������is common probability density 

function,
fx(x) and fy(y)	�������������are initial probability density 

functions,
fx/y(x/y) and fy/x(y/x)	���are conditional probability 

density functions. 
The initial probability density functions fx(x) and 

fy(y) can be calculated using relationships:

fx(x) = ∫ fX/Y(x, y)dy,� (13)

fy(y) = ∫ fX/Y(x, y)dx,� (14)

where the integrals are defined over the whole 
area of the probability density function. Then the 
equations (12), (13) and (14) show:

 

...




 


  









k+p
k+p k k k j j kk pj=k

k+pN i i
k+p k k k k j j k k+pi j=k

N i i
TTF lb TTF up TTFi

X,Y
Y X

X,Y

p x z p x z p x x dx

p x z = w p x x p x x dx

p TTF H x H w

f x, yf y x
f x, y dy

1: 0: -1 + -1+1

( ) ( )
1: +1 -1 +1: -11 +2

( ) ( )
=1

( ) ( ) ( )

( ) ( ( )

( ) = Pr

( )( ) =
( )

,� (15)


X,Y

X Y
X Y

f x, yf x y =
f x, y dx

x y

/
/

( )( / )
( )

/

. � (16)

Mean value E(X) and conditional mean value 
E(Y/X) of the random variable is then given by the 
relationships (17) and (18):

E(X) = ∫ xfx(x)dx,� (17)

 

...




 


  









k+p
k+p k k k j j kk pj=k

k+pN i i
k+p k k k k j j k k+pi j=k

N i i
TTF lb TTF up TTFi

X,Y
Y X

X,Y

X,Y
X Y

p x z p x z p x x dx

p x z = w p x x p x x dx

p TTF H x H w

f x, yf y x
f x, y dy

f x,f x y

1: 0: -1 + -1+1

( ) ( )
1: +1 -1 +1: -11 +2

( ) ( )
=1

( ) ( ) ( )

( ) ( ( )

( ) = Pr

( )( ) =
( )

(( ) =




X,Y

X,Y
Y X

X,Y

y
f x, y dx

yf x, y dy
E Y X yf y x dy =

f x, y dy

)
( )

( )
( ) = ( )

( )
.� (18)

The common probability density function serves 
as a  starting point for the calculation of other 
important values. For this reason, the calculation 
gives priority to the calculation of the probability 
density function, which is given by the available 
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data to which priority attention is given. Fig.  6 
shows a  procedure for fi nding the initial and 
conditional probability density functions, which is 
shown graphically.

Time to Failure Analysis Using 
Weibull Distribution

Weibull distribution is a  suitable model for 
tasks where the service life of machine parts is 
investigated. This distribution is used to model data 
regardless of whether the failure rate is increasing, 
decreasing or constant. The Weibull distribution 
is fl exible and adaptable to a  wide range of data. 
Time to failure, cycles to failure, transport distance, 
mechanical stress or similar related parameters 
should be recorded for all objects. The Weibull 
distribution using these measured values is very 
often used to predict the remaining useful life (RUL) 
of machine parts. The lifetime probability density 
distribution can be modelled even if none of the 
objects has failed.

Weibull distribution is characterized by the 
parameter (β), the service life parameter (η) and the 
location parameter (γ). The probability density is 
given for the three-parameter Weibull distribution 
by the equation (Weibull, 1951):

 

...
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

 


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




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k+p k k k j j kk pj=k

k+pN i i
k+p k k k k j j k k+pi j=k
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X,Y
Y X

X,Y

X,Y
X Y

p x z p x z p x x dx

p x z = w p x x p x x dx
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During application, we often see that the three-
parameter Weibull distribution becomes a  two-
parameter distribution (γ  =  0). The location 
parameter γ defi nes the minimum time (random 
variable) during which a fault may occur.

Using the fl exibility of the Weibull distribution, 
it is possible to model the individual phases of the 
classic bathtub reliability curve. The fi rst phase 
of the bathtub curve (early failure phase) can be 
approximated by the probability density function 
with the β < 1 shape parameter, the second phase 
(constant failure rate period) uses the β  =  1 shape 
parameter, and the last phase (fi nal period) can 
be approximated using values of the β  >  1 shape 
parameter. 

The failure occurrence data, expressed as time to 
failure or level of risk, can be applied to the Weibull 
distribution by parameter estimation or Bayesian 
analysis with respect to model parameters as 
a random variable.

Remaining Useful Life Probability 
Density Function

The basic principle of this prognostic method 
is to determine the distribution function of the 
probability density distribution of the remaining 
useful life of a  component. The component must 
be removed from service before reaching high 
probability of failure. Unfortunately, the main 
problem is that the remaining useful life of the 
probability density function is actually a condition 
of probability density function that changes over 
time. In fact, we must recalculate the probability 
density function of the remaining useful life at 
each time t based on new information that was not 
previously available (Engel et al., 2000).

Then, during the time interval t, we must 
recalculate the following probability density 
function of the remaining useful life on the basis 
that the failure has not yet occurred in that interval. 
This is a  modifi cation of the probability density 
function at any time when the region is equal to one. 
Over time t, the dispersion of the probability density 
function of the remaining useful life decreases; that 
means, the probability density function narrows. 
This corresponds to the fact that, as time passes, 
the probability density function approaches the 
point of failure, thus the time of failure becomes 
more certain and the predicted time becomes more 
accurate.

Data Driven Prediction Techniques – Neural 
Network

Non-linear neural network models are often used 
where statistical information on device failures and 
signal waveforms that lead to failures is available. 
These models are designed to approximate 
the dependence of the required information 
(parameter) on its attributes through repeated data 
discovery. This property allows prediction of the 
time sequence based on the laws of dynamics of the 
quantity contained in the data history archive.

.6: Representation of initial and conditional probability density functions Huynh et al. (2012) 
and Vachtsevanos et al. (2006)
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Neural network is a  system of interconnected 
units – neurons. Neuron is here, as in the biological 
area, the basic building unit of the entire network.

The mathematical model of the neuron is based 
on addition of input values x1 to xn, which are 
evaluated by weights w1 to wn. This value is referred 
to as the so-called internal potential of the neuron 
σ (weighted sum of input values). If the potential 
level of the neuron inputs 
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( ) is higher than 
the threshold θ, the neuron output will change. 
Mathematically, the model can be expressed as 
(Lewis et al., 1999):
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The output of the neuron y is determined by the 
value of its transfer function f(σ), whose argument 
is the value of the internal potential of the neuron. 
Only a  linearly separated problem can be solved 
with one neuron. More complex problems can be 
solved by interconnecting more neurons into one 
unit. Neural network consists of neurons which 
are organized into layers. The structure of a neural 
network is based on neurons from one layer 
interconnected with all neurons of the higher layer. 
Neurons in one layer are not interconnected. 

The values x1 to xn are inputs, the values y1 to ym 
are outputs. The transfer function f(σ) is contained 
in the hidden layer of the neural network. The 
weights in the hidden layer are vjk, the weights in 
the output layer are wjk. The hidden layer threshold 
is θvj and the output layer threshold is θwi. The 
number of neurons in the hidden layer is denoted L. 
Mathematically, this two-layer neural network can 
be expressed as (Lewis et al., 1999):
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In order for a  neural network to be able to 
provide relevant outputs, its use is conditional on 
the implementation of the network teaching phase. 
At this stage, the network is “taught” how to respond 
to certain inputs, which are the basis for generating 
corresponding outputs in the working phase. There 
are several ways to define the weight settings of 
individual neurons in the network teaching phase 
(teaching with a  teacher, without a  teacher, with 
a partial-teacher) (Lewis et al., 1999).

RESULTS AND DISCUSSION
One way to detect an emerging failure or abnormal 

behaviour of a  particular group of a  motor vehicle 
in time, as shown in Fig. 3, is the use of simulation 
for the given group of the motor vehicle. The created 
computational model for the selected machine group 
must be able to simulate the operation of the group 
that is in a trouble-free state based on the input data 
from the vehicle network. The second part of this fault 
detection method consists in comparing the output 
data from the model with the real data obtained from 
the vehicle network. This method of fault detection 
corresponds to the proactive maintenance system 
described in chapter Telemetry Monitoring (Fig. 2).

The Iveco automatic transmission was selected 
for the experiment and subsequent comparison 
with the fault detection model. For this particular 
case, a  virtual automatic transmission model 
was created in Matlab & Simulink software. The 
input data (gear engaged and gearbox input shaft 
speed) are recorded from the vehicle network 
using a  datalogger and entered in an appropriate 
format as input information for the virtual model 
operation. It is not a  real-time fault detection, 
however, with a  suitable system of automatic 
downloading of stored data and its subsequent 
transfer to a  virtual model, this method is very 
suitable for detecting non-standard states, or early 

7: Part of the virtual model – automatic transmission elements
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detection of incipient failure and prevention of 
major damage to the aggregate.

The structure of the model corresponds to the 
physical design of the ZF 6HP260 gearbox, where 
the torque is transmitted through the planetary gear 
set in the required gear ratio. The change of the gear 
ratio or gear shifting is ensured by a system of fi ve 
clutches, which in a  corresponding combination 
brake individual elements of the planetary gears 
and ensure the appropriate gear ratio. A part of the 
virtual model with the above elements is shown in 
Fig. 7.

The Fig.  8 shows an example of a  comparison 
of the output shaft speed values of the automatic 
transmission from the model (Chart 2) and the actual 
measured shaft speed values of the Iveco automatic 
transmission (Chart 3). The output shaft speed of the 
automatic transmission shows a 10-minute driving 
period of the Iveco motor vehicle.

Numerical values are evaluated using the Pearson 
correlation coeffi  cient. The compared sets A and B 
represent the values of the output shaft speed of the 
automatic transmission measured on the vehicle 
(real data – Chart 3) and the values of the same 
parameter processed by the model (Chart 2). The 
covariance cov is calculated from the variables  X

and Y. To get the Pearson correlation coeffi  cient ρ, 
the covariance is divided by the square root of 
variance of sets X and Y by (Stigler, 1989):
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where

μX = E(X), σX
2 = E(X2) - E2(X), (23)

μY = E(Y), σY
2 = E(Y2) - E2(Y), (24)
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where
cov ......covariance,
σX .........standard deviation of X,
σY .........standard deviation of Y,
μX .........mean of X,
μY .........mean of Y,
E ...........expectation.

8: Example of measured data and data processed by the Simulink model
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When comparing the measured data sets with 
the data processed by the model, the Pearson 
correlation coefficient ranged from 0.96 to 0.98. 
The initial measurement included 5 motor vehicles 
that travelled the same route. An important fact is 
that at that time, the motor vehicles measured by 
real data had very few kilometres (short distance) 
travelled. From this fact it can be assumed that the 
automatic transmissions of the measured motor 
vehicles were in very good technical condition. 
This range of correlation coefficient values may be 

considered as reference values for assessing the 
technical condition of the automatic transmission of 
the given motor vehicle.

A  very important part of the fault detection 
system by comparing the values of the real 
operating variables with the variables coming 
out of the model is the whole process automation 
system. Using the telemetry transmission, as shown 
in Fig. 2, the motor vehicle can be “under constant 
technical supervision” without restricting its 
operation.

CONCLUSION
With increasing demands on the operation of technical equipment, the approaches to their preventive 
maintenance have necessarily changed. A  well-designed and mastered preventive maintenance 
system is reflected in the increased reliability of the equipment in operation. In the field of motor 
vehicles, reliability is a  very important feature. Therefore, the effort of manufacturers, but also 
operators, is to eliminate the immobilisation of motor vehicles for technical reasons to a minimum.
Also, advanced armies currently combine different approaches to preventive maintenance to ensure 
maximum reliability and, most importantly, the combat capability of motorized vehicles. Modern 
preventive maintenance systems rely on advanced vehicle architecture, regardless of the preferred 
preventive maintenance system. In general, the operators endeavour is to know the current technical 
condition of motor vehicles, or the condition in which the motor vehicle (monitored groups) 
will gradually approach the specified wear limits, when it is necessary to carry out preventive 
maintenance intervention.
The authors demonstrated on a simple example of an automatic transmission of an Iveco motor vehicle 
the way of setting limit values for the implementation of preventive maintenance intervention. The 
system is based on the comparison of modelled data with the operational data of the motor vehicle 
using the Pearson correlation coefficient. If the structure of the model corresponds to the structure 
of the monitored group of the motor vehicle, then it is possible to determine the specific part of the 
group that shows abnormal behaviour (limit wear). A timely preventive intervention can thus avert 
a failure or total damage to the group. The current possibilities of wireless data transmission extend 
the possibilities in the field of telemetric monitoring and evaluation of the technical condition of 
motor vehicles in real time. There is no direct danger when operating the fleet in the civilian sector 
using ‘Fleet Managementʼ and telemetry data. In a military environment, the confidentiality situation 
is considerably more complex, and there are therefore some limitations to the use of telemetric data 
transmission for monitoring the technical condition of military motor vehicles. It is mainly about 
finding the location of these military motor vehicles.
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