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Abstract

Remote sensing can be used for yield estimation prior to harvest at the field level to provide helpful 
information for agricultural decision making. This study was undertaken in Polkovice, located 
at low elevations in the  Czech Republic. From 2014 – 2016, two datasets of satellite imagery were 
used: the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 datasets. Satellite 
data were compared with yields and other observations at the level of land blocks. Winter oilseed rape, 
winter wheat and spring barley yield data, representing the crops planted over the analyzed period, 
were used for comparison. In 2016, a more detailed analysis was conducted. We tested a relationship 
between remote sensing data and the  spatial yield variability measured by a  yield monitor from 
a  combine harvester. Correlations varied from approximately r = 0.4 to r = 0.7 with the  highest 
correlation (r = 0.74) between yield and the Green Normalized Difference Vegetation Index collected 
from a drone. Vegetation indices from both Landsat 8 and the MODIS showed a positive relationship 
with yields for the compared period. The highest correlation was between yield and the Enhanced 
Vegetation Index (r = 0.8) while the  lowest was between yield and the  Normalized Difference 
Vegetation Index from MODIS (r = 0.1). 

Keywords: crop yield, vegetation indices, remote sensing, satellites, unmanned aerial vehicles, yield 
estimation

INTRODUCTION
Remote sensing indicators are used in agriculture 

for monitoring crop conditions and forecasting 
yield (Wardlow et al., 2012). Indicators widely used in 
agriculture include vegetation indices (VIs) such as 
the Normalized Difference Vegetation Index (NDVI) 
or the  Enhanced Vegetation Index (EVI), which 
track crop progress and evolution in green biomass 

amount (Becker‑Reshef  et  al., 2010; Esquerdo  et  al., 
2011). There are also other more physically based 
indicators that focus on the light‑harvesting capacity 
and photosynthetic rates. They include the  Leaf 
Area Index (LAI) and the  fraction of absorbed 
Photosynthetically Active Radiation (FPAR) 
(Doraiswamy  et  al., 2005). Another class of remote 
sensing indicators is related to different aspects of 
surface moisture, such as satellite‑based estimates 
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of evapotranspiration (ET), which can estimate plant 
water use (Anderson et al., 2007).

Different spectral bands are used together to derive 
a  dimensionless proxy of plant vitality and standing 
biomass in the  form of VIs. One VI that has been 
widely used to monitor vegetation conditions, from 
regional to global scales, is the  NDVI (Tucker  et  al., 
1985). Healthy vegetation absorbs most of the visible 
light that hits it and reflects a  huge amount of 
the  near infrared (NIR) light. Unhealthy or sparse 
vegetation reflects more visible and less NIR bands of 
the electromagnetic spectrum (Weier  and  Herring). 
NDVI is calculated from the  visible red (RED) and 
NIR spectral bands and is expressed by the following 
formula described by Rouse et al. (1974):

NDVI NIR RED
NIR RED

�
�
�

� (1)

Calculations of NDVI for a given pixel always result 
in a  number in the  range from minus one (–1) to 
plus one (+1). However, no green leaves give a value 
close to zero. A  value of zero means no vegetation, 
and a value close to +1 (0.8 – 0.9) indicates the highest 
possible density of green leaves (Weier and Herring).

A slight modification of NDVI is the Green NDVI 
(GNDVI). Gitelson and Merzlyak (1998) described 
in their study that GNDVI was much more sensitive 
to the  changes in chlorophyll concentration than 
NDVI. It thus allowed the  precise assessment of 
pigment concentration in different chlorophyll 
variations. Instead of reflectance in the  red band, 
green band (GREEN) is involved in the  calculation 
(Gitelson and Merzlyak, 1998):

GNDVI NIR GREEN
NIR GREEN

�
�
�

� (2)

Another vegetation index derived from NDVI 
is the  Soil‑adjusted Vegetation Index (SAVI). 
The SAVI was designed to minimize soil influences 
on vegetation by introducing a  soil‑adjustment 
factor (L). In the case of SAVI, an adjustment factor is 
a constant L = 0.5:

SAVI SAVII NIR RED
NIR RED L

L�
�

� �
�( )1 � (3)

Later, the  Modified Soil‑adjusted vegetation 
index (MSAVI) and its second version (MSAVI2) was 
developed by Qi et al. (1994) to replace the constant 
L in the  SAVI formula. In the  MSAVI formula, 
the constant L is replaced with a self‑adjusting L. In 
the  case of MSAVI2, an iterative function of L was 
used in the index derivation:  

MSAVI
NIR NIR NIR RED
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Both versions of MSAVI showed good results 
relating to the  vegetation sensitivity and soil noise 
reduction (Qi et al., 1994).

The EVI was developed as a  standard product for 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor on board the polar orbiting Terra and 
Aqua satellites. EVI provides improved sensitivity 
in areas with large amounts of biomass (Jiang  et  al., 
2008). The  EVI corrects for some distortions in 
the  reflected radiation caused by the  particles in 
the  air and the  ground cover below the  vegetation. 
The EVI range of values does not become saturated 
as easily as the  NDVI one when rainforests and 
other areas with large amounts of chlorophyll are 
observed (Huete  et  al., 2006). EVI was found to be 
more linearly correlated with green LAI in crop 
fields than NDVI (Boegh et al., 2002).

EVI implements the  blue band (BLUE) into its 
calculation in addition to the  red and NIR spectral 
bands (Huete et al., 2002):

EVI x NIR RED
NIR xRED xBLUE

�
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The disadvantage of EVI is its limitation to sensor 
systems designed with a  blue band. The  blue band 
also requires more difficult and varying atmospheric 
correction schemes that might cause problematic 
consistency of EVI values (Fensholt et al., 2006).

Therefore, the two‑band EVI (EVI2) was developed 
by Jiang et al. (2008). EVI2 is calculated only from red 
and NIR bands without the implementation of a blue 
band. The idea behind the research activities done by 
Jiang et al. (2008) was to keep the best similarity with 
the  3‑band (original) EVI. In this way, EVI2 can be 
used for sensors without a blue band and at the same 
time serve as an acceptable substitute of EVI. EVI2 
was formulated by Jiang et al. (2008):

EVI x NIR RED
NIR xRED

2
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There are many other remote sensing indices and 
indicators. Some of them are based on reflectance 
in the  red‑edge band, such as the  Normalized Red 
Edge‑Red Index (NRERI) or Red Edge Normalized 
Difference Vegetation Index (RENDVI), which 
represents another modification of the  classical 
NDVI. Another remote sensing index utilizing 
the  red‑edge band is the  Normalized Difference 
Red Edge Index (NDRE), which can be used to 
map the  within‑field variability of foliar nitrogen. 
This knowledge can help farmers understand 
the  fertilizer requirements of the  crops. These 
indices use the  red‑edge band due to its sensitivity 
to medium to high levels of chlorophyll content. 
The  red edge is therefore a  good indicator of crop 
health in the  stages of crop development where 
the  chlorophyll concentration is relatively high 
(http://www.hiphen‑plant.com). Information on 
background soil reflectance can also be very useful 
for agricultural operations. It can be determined 
from the soil line acquired directly from satellite data 
by using the  Soil Reflectance Index  (SRI) (Fang and 
Liang, 2003).
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Remote sensing data come from various sources. 
Many studies have acquired their data from polar 
orbiting satellites because they are currently 
freely available. Satellite images often come from 
the  Operational Land Imager (OLI) onboard 
the Landsat 8 satellite or the MODIS sensor onboard 
the  Aqua and Terra satellites. In 1999, the  National 
Aeronautics and Space Administration (NASA) 
launched the  Terra satellite. In 2002, the  Aqua 
satellite was launched. Aboard both Terra and 
Aqua sits the  MODIS sensor that provides data at 
spatial resolutions ranging from 1 km to 250 m. 
Both Terra and Aqua instruments observe the entire 
Earth’s surface every 1 to 2 days, obtaining data in 
36 spectral bands (Johnson, 2014). Landsat 8 was 
launched in 2013 and provides images of the entire 
Earth every 16 days. Landsat 8 has 11 spectral bands 
altogether. Most of the spectral bands are at a spatial 
resolution of 30 m, while thermal infrared bands 
are at 100 m and the panchromatic band is at a 15 m 
resolution (Irons et al., 2012).

In addition to data from polar orbiting satellites, 
other sources of VIs and other remote sensing 
indicators can be used, such as airborne imaging 
and the  unmanned aerial vehicle (UAV) surveys by 
Remotely Piloted Aircraft Systems. UAV platforms 
are a  good alternative to the  traditional remote 
sensing techniques because of their low cost of 
operation, high spatial and temporal resolution 
and high flexibility in image acquisition (Zhang 
and Kovacs, 2012). The  main sensing technology 
in agriculture is based on multispectral cameras, 
which provide single bands for calculating 
broadband vegetation indices (Candiago et al., 2015; 
Gómez‑Candón  et  al., 2014; Sankaran  et  al., 2015). 
The  combination of a  simple RGB survey with 
spatial surface models and extracted information 
of the height of crop biomass resulted in improved 
crop yield prediction, as shown in the  case of 
the  mapping of maize yield by Geipel  et  al. (2014) 
and in the  estimation of spring barley biomass by 
Bendig et al. (2014).

There have been studies investigating correlations 
between various satellite indices and crop yields 
(Anderson  et  al., 2016). Conclusions from these 
studies showed that no single indicator works in all 
locations at all times because performance depends 
on many factors such as climate, soil, management, 
crop type, growing season or the  limitations of 
a given device or sensor (Johnson, 2014).

Our paper provides a  comparison of remote 
and ground‑sensed VIs with yields of three 
different crops planted in the  experimental 
site  –  winter wheat (Triticum aestivum L.), spring 
barley (Hordeum vulgare) and winter oilseed rape 
(Brassica  napus). Altogether, these crops cover 
the highest planted area of field crops in the Czech 
Republic (https:// www.czso. cz). They represent 
crops with different timings of growing seasons 
(winter vs. spring crop), which cause different 
levels of moisture sensitivity (Hlavinka  et  al., 2009; 
Trnka et al., 2012).

The goal of this paper is to test various indices 
from different sources to identify suitable remote 
sensing tools for yield estimation prior to harvest at 
the field level. The paper also describes the ability 
of remote sensing products to reproduce the spatial 
variability of crop yields within the field.

MATERIALS AND METHODS

Experimental site
The experimental site in Polkovice (49°23′50.05″N, 

17°14′52.25″E) is located at low elevations 
(approximately 200 m a.s.l.) with intensive crop 
production. Polkovice is a  village located in 
the  Olomoucký region in the  eastern part of 
the  Czech Republic. The  site is divided into two 
land blocks – Niva (26.08 ha) and Trávník (24.38 ha). 
The  soil type at the  Polkovice site is chernozem. 
The  experimental site is surrounded by a  mosaic of 
agricultural crop fields dominated mainly by spring 
barley, winter wheat, winter oilseed rape, sugar beet 
and maize fields.

The overall climate of the area of the experimental 
site is influenced by the  penetration and mingling 
of ocean and continental effects. The  experimental 
site is characterized by prevailing westerly and 
northwesterly winds with rather low precipitation 
rates. Mean annual temperature for the  period 
1961 – 1990 is 8.7 °C and mean annual sum of 
precipitation is 555 mm. In the  year 2014, the  mean 
annual temperature was 11 °C and the  annual 
precipitation reached 539 mm. In 2015, the  mean 
annual temperature was 10.7 °C and the  annual 
precipitation was 397 mm. In 2016, the mean annual 
temperature reached the  value of 10.1 °C while 
the  annual precipitation was 461 mm. Weather 
data come from the  weather station situated within 
the experimantal site.

This data shows that all three years were warmer 
and drier than the long‑term mean over the period 
1961 – 1990. Comparison with long‑term mean 
shows that especially the  year 2015 was very dry 
with its 397 mm per year. There was relatively low 
rainfall during July and no rain at all for the middle 
of August. A  heavy rain came on 17th of August 
and lasted for three days (17th – 19th of August) 
determining the  beginning of period with more 
frequent rains (Pozníková, 2016).

Crop characteristics and yield data
Yield data in the  Czech Republic are usually 

provided at the  regional (NUTS3) and district 
(LAU1) levels (https://www.czso.cz/csu/czso/
kraje‑nuts‑3‑a‑okresy‑lau‑1‑ceske‑republiky). 
They are obtained primarily from the  Ministry of 
Agriculture of the  Czech Republic (http: /  / eagri. cz). 
For certain districts and years, it may be difficult 
to find any existing data, so yield estimation 
from the  Czech Agrarian Chamber is then used 
(www agrocr.cz). These data can be used for 
index‑yield analysis at the  regional or district 
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levels. In this study, we focused on yield estimation 
at the  field level. Such a  detailed analysis is not 
commonly available and used in the Czech Republic.

For the  period from 2014 – 2016, yield data were 
available for two land blocks  –  Niva and Trávník. 
Data were obtained by grain weighing directly after 
harvesting by the combine harvester. Standard water 
content of grains was considered (i.e. 14 % for cereals 
and 6 % for winter oilseed rape). For the  year 2016, 
harvest was carried out with the  combine harvester 
Claas Lexion 770 equipped with a yield monitor and 
GPS that enabled it to acquire grain flow and moisture 
records in a  1 s interval. Yield data were filtered 
in the  GIS for erroneous values and processed by 
ordinary spatial interpolation via kriging into raster 
format with a spatial resolution of 5 m per pixel.

There were different crops planted in Polkovice 
over the  study period:  in 2014, the  cultivated crop 
was winter oilseed rape (Brassica  napus); in 2015, it 
was winter wheat (Triticum aestivum L.); and in 2016, 
it was spring barley (Hordeum vulgare). Yields were 
originally reported in tons per hectare, but for 
the  index‑yield comparison for 2014 – 2016, yield 
data were converted into cereal units.

Remote sensing by satellite data
For 2014 – 2016, remote sensing data were 

collected from the  Moderate Resolution Imaging 
Spectroradiometer (MODIS) at a spatial resolution 
of 250 m and from Landsat 8 at a  resolution of 
30 m. Time series of two indices were used and 
compared:  NDVI and EVI. Index time series 
were compared over the  part of the  growing 
season when changes in vegetation development 
are most significant and satellite datasets were 
available (from April to July, except for Landsat 
8 in 2014, where the  period was from April 
to the  beginning of August). This period was 
chosen because various studies (e.g., Johnson, 
2016) demonstrated that correlations between 
cereal crop yields and NDVI values peak one or 
two months prior to harvest. Winter wheat and 
spring barley were harvested at the  beginning 
of August (6th of August and 8th – 9th of August, 
respectively), while oilseed rape was harvested at 
the end of July and the beginning of August (most 
of the  area was harvested from the  26th of July to 
the 2nd of August).

For the  MODIS dataset, 16‑day composites from 
the  Terra satellite were used. Composite products 
help to overcome the  impact of cloud cover that 
can appear on a given day on the quality of satellite 
imagery. Composites use the data of the best quality 
over a  given period. The  16‑day compositing 
period was chosen to ensure that pixels were free 
of noise. Due to this fact, the  number of MODIS 
composites was higher than the  available cloudless 
Landsat scenes. The  number of composites varied 
for every year of the  analysis  –  10 composites 
for 2014, 9 for 2015 and 8 for 2016. MODIS 
composite product MOD13Q1v006 was retrieved 
from  https: /  / lpdaac. usgs.gov, maintained by 

the  NASA EOSDIS Land Processes Distributed 
Active Archive Center at the  USGS / Earth 
Resources Observation and Science Center, Sioux 
Falls, South Dakota.

Due to the  coarser MODIS resolution, the  index 
value of one representative pixel within each land 
block was chosen for the  index‑yield comparison. 
This chosen pixel represented typical field 
conditions and was not influenced by other 
landscape features, such as roads or forest. 
Another important criterion was that the  chosen 
pixel did not overlap the  land block boundaries. 
For the  Landsat 8 data, the  index values obtained 
depended on data availability that, in turn, 
depended on the  cloudiness of Landsat scenes. 
Only scenes that did not contain any clouds over 
the Polkovice site were used. The number of scenes 
was the  same for every year of the  analysis  –  6 
scenes were used per given year. Landsat data 
from the  OLI sensor were downloaded from 
the  Earth Resources Observation and Science 
(EROS) Center Science Processing Architecture 
(ESPA) on‑demand interface (https: /  / landsat.
usgs.gov / espa) run by the  U.S. Geological Survey 
(USGS). Land Surface Reflectance products 
were downloaded in the  form of calculated VIs. 
The  Landsat scenes covering the  eastern part of 
the  Czech Republic that included the  Polkovice 
site were used for the  extraction of VI values. For 
the index‑yield comparison, the spatial averages of 
index values over the land blocks were used.

Unmanned survey and proximal sensing
In 2016, one unmanned survey campaign was 

carried out over the  experimental field with spring 
barley. The  survey occurred on the  7th of June, or 
day of year (DOY) 159. For this purpose, the  fixed 
wing Sensefly eBee system was used to collect 
images via the  multispectral sensor MultiSPEC 
4C (AIRINOV, France). MultiSPEC 4C consists 
of a  4‑band optical sensor (green 530 – 570 nm, 
red 640 – 680 nm, red‑edge 730 – 740 nm and NIR 
770 – 810 nm) and a sensor for incoming radiation to 
normalize light conditions during the flight mission 
(Haghighattalab  et  al., 2016). Acquired images 
were processed in the  Pix4D software package 
(Pix4D  SA, Lausanne, Switzerland) to create 
the final orthomosaic image with a spatial resolution 
of 0.15 m per pixel.

In addition to the  UAV survey, NDVI was 
measured at 20 points in the  field (Fig. 1) with 
a  GreenSeeker handheld crop sensor (Trimble, 
USA). The  amount and location of points was 
chosen to represent heterogeneity of soil conditions 
and variability of crop vegetation at the beginning of 
the growing season in 2016.

The GreenSeeker is an optical sensor used to 
measure plant biomass, displaying it as NDVI. 
An NDVI value for the  vegetation measured by 
the  sensor appears on the  LCD display when 
the  trigger is pushed. NDVI values were measured 
approximately 60 – 120 cm above the crop vegetation, 
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as recommended by the  producer (www.trimble.
com / agriculture). Measurement by the GreenSeeker 
crop sensor was done four times during the growing 
season, from May to July. The  extraction of all 
remotely sensed data was done at 20 measurement 
points in the  field where NDVI was measured by 
the GreenSeeker crop sensor. 

Altogether, 9 indices were computed from 
the  UAV survey and the  GreenSeeker crop sensor, 
including NDVI, EVI2, SAVI, MSAVI2, GNDVI and 
others (Tab. I).

Index‑yield comparison
The ArcGIS (ESRI, USA) and ENVI (Harris, USA) 

software packages were used for the  calculation of 
indices and the  extraction of average values over 
the  Polkovice site. STATISTICA (TIBCO Software, 
USA) software was used to provide index‑yield 
correlations for 2016.

First, NDVI and EVI were compared with 
the  average yield data for 2014 – 2016. This was 
done for both land blocks for the  period from 
the 16th of April to the 30th of June (DOY 106 – 181, 

107 – 182 for 2016). This period represents 
a  part of the  growing season when changes in 
vegetation development are most significant. 
NDVI and EVI sums through the  defined period 
of each year from both satellites were compared 
with crop yields via regression analyses. Because 
different crops were planted at the  Polkovice 
site throughout 2014 – 2016, yield data were 
converted into cereal units (Brankatschk and 
Finkbeiner, 2014). This conversion allows for 
the  comparison of yields of different crops (e.g., 
cereals with winter oilseed rape). To achieve 
a  cereal unit from oil seed rape, it is necessary 
to adjust by a  factor of 2 (for winter wheat and 
spring barley, the factor is 1).

Next, we calculated the  detailed VI‑yield 
correlations for 2016. Dependencies between 
remote and ground‑sensed data and crop yield 
were assessed using the  Pearson correlation 
coefficient. Altogether, 10 different indices derived 
from the UAV, Landsat 8 and the GreenSeeker crop 
sensor were correlated with spring barley yield in 
this year (Tab. I).

I:  Range of remote sensing data for the study area in Polkovice for the period from 2014 – 2016.

Index Full name of the index Source of data

    Landsat 8 MODIS UAV GreenSeeker

EVI Enhanced Vegetation Index 2014 − 2016 2014 − 2016    

EVI2 Two‑band Enhanced Vegetation Index     2016  

NDVI Normalized Difference Vegetation Index 2014 − 2016 2014 − 2016 2016 2016

NRERI Normalized Red Edge‑Red Index     2016  

SRI Soil Reflectance Index      2016  

SAVI Soil‑adjusted Vegetation Index     2016  

RENDVI Red Edge Normalized Difference Vegetation Index     2016  

NDRE Normalized Difference Red Edge Index     2016  

MSAVI2 Modified Soil‑adjusted Vegetation Index     2016  

GNDVI Green Normalized Difference Vegetation Index     2016  

1:  Yield map showing the crop variability and measurement points within the experimental site for the year 2016. 
It is an output of the yield monitor from the combine harvester displaying the amount of crop harvested in the particular location in the field.
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RESULTS AND DISCUSSION

The index‑yield comparison for the  period from 
2014 – 2016 showed a  tight relationship between 
indices and yield data. Fig.  2 shows NDVI and EVI 
performance during the  period from DOY 80 – 220 
for individual years of the  compared period. VIs 
from Landsat 8 and MODIS showed different 
performances, caused by different availability 
of scenes or composites. VIs from MODIS 
demonstrated more detailed performance because 
of the  higher frequency of composites, ensuring 
cloudless imagery within the compositing period.

For Landsat 8, winter wheat and spring barley 
(years 2015 and 2016, respectively) showed similar 
relationships and patterns from spring to harvest, 
with the  highest NDVI and EVI values occurring 
around DOY 140. For the  NDVI and EVI values 
from MODIS, the  highest values appeared not 
only around DOY 140 but also later in the  year 
(around DOY 160 for 2015 and DOY 180 for 
2016). For 2014, when oilseed rape was planted 
at the  Polkovice site, the  highest index values 
appeared around or after DOY 160. The  NDVI 
values from MODIS showed one more peak 
around DOY 100, while index values declined 
between DOY 100 and 160.

For a  better understanding of the  relationship 
between remote sensing data and yields, 
the  yield map was used (Fig. 1). The  map is an 
output of the  yield monitor from the  combine 
harvester showing the  yield variability within 
the experimental site. It displays the amount of crop 
harvested in the  particular location in the  field in 
tons per hectare. The  map represents the  first time 
that this method has been used at the Polkovice site. 
Fig. 1 demonstrates that there were higher yields in 
the  Trávník land block than in Niva. Lower values 
on the left edges of both land blocks may be caused 
by the  shade effect of trees growing along the  land 
block borders.

The NDVI and EVI from both Landsat 8 and 
MODIS showed a  positive relationship with 
yields for the  compared period, even though 
the index‑yield comparison of indices from MODIS 
did not show a significant relationship. The Pearson 
correlation coefficient of the  NDVI from MODIS 
versus yields gave an r = 0.13 for all years, while it 
gave an r = 0.99 for years 2015 – 2016 (winter wheat 
and spring barley yields). The correlation of the EVI 
from MODIS versus yields gave an r = 0.23 for 
all years and an r = 0.69 for years 2015 – 2016. For 
the  NDVI and EVI from Landsat 8, the  differences 
between the  whole period and years 2015 – 2016 
were less significant. The correlation showed NDVI 
performing well, with an r = 0.75 for the  whole 
period and an r = 0.87 for years 2015 – 2016. 
Furthermore, a correlation of EVI yielded an r = 0.83 
for the  whole period and an r = 0.99 for years 
2015 – 2016. 

Linear regressions of scatter plots for the  period 
2014 – 2016 and the  years 2015 and 2016 (Fig.  3) 

provide deeper insight into the  index‑yield 
relationships and illustrate the  influence of 
particular crop yields in the overall comparison. 

Weak relationships between yields and 
the indices from MODIS are caused by two factors. 
First, MODIS has a  coarser resolution:  250 m 
compared to the 30 m of Landsat 8. This resolution 
is not high enough to provide the  proper analysis 
at such a detailed level (field) and should instead be 
used for larger areas or larger field blocks. A  larger 
area will better fit the  MODIS resolution of 250 m 
and will probably provide more reasonable results. 
In this study, only one representative MODIS pixel 
within each land block was used to attain index 
values, but more pixels should be chosen to obtain 
more precise results. Land blocks at the  Polkovice 
site were not large enough to contain more 
MODIS pixels that would not be influenced by 
other landscape features (e.g., roads, forest stands, 
and windbreaks) and simultaneously represent 
the typical field conditions.

The second factor influencing the  performance 
of both MODIS and Landsat 8 VIs was a  seasonal 
pattern of oilseed rape (planted at the  Polkovice 
site in 2014) that differs from cereals. This factor 
influenced the  performance of VIs from Landsat 
8 significantly less than VIs from MODIS. This 
can be caused by lower amount of available 
Landsat scenes compared to MODIS composites. 
The  seasonal pattern differs mainly by the  earlier 
flowering date and yellow flowers of oilseed rape. 
This phenomenon is described in more detail by 
Johnson (2016), who showed that NDVI values 
for oilseed rape (from MODIS on Terra and Aqua) 
achieved the  highest values later in the  season 
than the NDVI values for spring barley and winter 
wheat. The  study also showed that the  correlation 
between NDVI and oilseed rape yield peaked 
much later in the  season compared to spring 
barley and winter wheat. Spring barley and winter 
wheat obtained their highest correlations in May 
and at the  beginning of June, while oilseed rape 
correlation values were negative during this period 
(until the beginning of July). Correlations between 
oilseed rape yield and NDVI values achieved their 
highest values in the end of July and in August.

For the  year 2016, the  correlations between 
observed spatial variability of spring barley 
yield and remote and ground‑sensed reflectance 
data varied mostly from r = 0.4 to r = 0.7 (Tab. II). 
The  correlations between yield and the  indices 
from the UAV were generally high, with the highest 
correlation (r = 0.74) obtained between yield 
and GNDVI. High correlations were also found 
between yield and other indices, such as SRI 
(r = 0.70) and NDVI (r = 0.69). The  relationships 
between yield data and the VIs (NDVI and RENDVI) 
from the  UAV imagery are shown in scatter plots 
in Fig. 4. The  second highest correlation was 
found between yield and NDVI, as measured by 
the  GreenSeeker sensor from the  4th of July, 2016 
(r = 0.73). The  highest correlation collected from 
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2:  NDVI and EVI time series obtained from Landsat 8 and MODIS through 
part of the growing season for two land blocks over the period from 2014 – 2016.

3:  Scatter plots of yield vs. NDVI and EVI obtained from Landsat 8 and MODIS 
from the 16th of April to the 30th of June (DOY 106 – 181, 107 – 182 for 2016). Correlations of NDVI 

and EVI variants to yield are provided for two periods: 2014 – 2016 and 2015 – 2016.

II:  Pearson correlation coefficients and coefficients of determination of indices (from the UAV, Landsat 8 and the GreenSeeker sensor) and 
yield for 2016. Bold values of correlation coefficients are statistically significant at the 0.05 level (p < 0.05).

UAV 7‑Jun‑2016 Landsat 8 GreenSeeker crop sensor

Index r R2 Index Date r R2 Index Date r R2

EVI2 0.403 0.162 EVI 16‑Apr‑2016 –0.102 0.010 NDVI 19‑May‑2016 0.620 0.385

NDVI 0.693 0.481 EVI 9‑May‑2016 0.583 0.340 NDVI 31‑May‑2016 0.497 0.247

NRERI 0.668 0.446 EVI 25‑May‑2016 0.692 0.479 NDVI 23‑Jun‑2016 0.567 0.322

SRI 0.701 0.491 NDVI 16‑Apr‑2016 0.401 0.161 NDVI 4‑Jul‑2016 0.734 0.539

SAVI 0.411 0.169 NDVI 9‑May‑2016 0.676 0.456        

RENDVI 0.557 0.310 NDVI 25‑May‑2016 0.638 0.407        

NDRE 0.681 0.464            

MSAVI2 0.501 0.251            

GNDVI 0.741 0.549                
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Landsat 8 data was found between yield and the EVI 
from the  25th of May, 2016 (r = 0.69). The  highest 
correlation between yield and the  NDVI from 
Landsat 8 was from the 9th of May, 2016 (r = 0.68).

Our paper represents an initial analysis, and 
further research is needed to better understand 
the  relationships between crop yields and 
remote sensing products at the  field level. Future 
investigations will include a  wider range of remote 
sensing indices and indicators. One of these will 
be the  two‑band EVI2 to see how EVI and EVI2 
perform in comparison with crop yields. It might 
be useful to see if the  utilization of the  blue band 
plays a role. Fensholt et al. (2006) demonstrated that 
the  EVI values might be more problematic due to 
more difficult and varying atmospheric correction 
schemes of the blue band. Another remote sensing 
index that will be included in future studies is 
the  Evaporative Stress Index (ESI), a  product of 
the  Atmosphere‑land Exchange Inverse model 
(ALEXI) (Anderson  et  al., 2011). ESI is an indicator 
of agricultural drought expressed as standardized 
anomalies in the  ratio of actual‑to‑potential ET 
(Anderson  et  al., 2011, 2013, 2015). The  ESI global 
product is currently at the  5 km resolution, which 
is too broad for index‑yield comparisons at the field 
level, as done in this study. A  new prototype 
of the  ESI global product with a  higher spatial 
resolution will be available in the near future due to 
use of the Visible Infrared Imaging Radiometer Suite 
(VIIRS) sensor on the Suomi NPP satellite (Hain and 
Anderson, 2017). In addition to classical remote 
sensing indices, the  utilization of LAI can lead to 

deeper insights into the  index‑yield relationship. 
A  freely available product (MOD15A2H) from 
the MODIS sensor on Terra combines FPAR and LAI 
and provides data in an 8‑day compositing period at 
a  spatial resolution of 500 m (https://lpdaac.usgs.
gov/dataset_discovery/modis / modis_products_
table / mod15a2h_v006).

In this study, the  images from the  MODIS on 
the  Terra satellite and Landsat 8 were analyzed for 
year‑to‑year comparisons of yield data. There are 
currently more freely available high‑resolution 
satellite data, such as Sentinels 2A and 2B operated 
by the European Space Agency since May 2015 (2A). 
Sentinel multispectral data have great potential, as 
they are taken at a  high spatial resolution of 10 m 
that better fits with the  average size of land blocks 
in the  Czech Republic; the  satellite also features 
a shorter revisit time (3 days for the 2A / B tandem) in 
comparison to Landsat 8 (16 days).

Another challenge for future investigation is how 
to analyze the  already extracted values of various 
remote sensing indicators. In this study, NDVI and 
EVI sums (based on daily VI values derived from 
linear interpolation between observations) were 
used to conduct regression analyses. Another option 
is to utilize polynomial fits of different degrees 
to imitate the  temporal changes in vegetation 
development (instead of direct lines between 
observations). In this way, the  interpolated values 
can then be averaged by an arithmetic or weighted 
(individually for a  specific part of the  season) 
procedure over the specified period and compared 
to crop yields.

4:  Scatter plots of yield data and indices obtained from a UAV image from the 7th of June, 2016.

CONCLUSION
In this study, VIs from Landsat 8 and MODIS were compared with yields from two land blocks 
over the period 2014 – 2016. Correlations of VIs versus yields showed NDVI and EVI from Landsat 
performing well, while the same indices from MODIS did not show a significant relationship. This 
was caused by different frequency of Landsat scenes or MODIS composites and different spatial 
resolution. The 250 m resolution of MODIS compared to the 30 m of Landsat 8 appeared not to be 
detailed enough to provide reasonable information about yields at a such detailed level. Results of 
the study showed that the year 2014 was quite problematic due to a seasonal pattern of oilseed rape 
that is different from cereals. This phenomenon affected more the performance of VIs from MODIS 
than VIs from Landsat.
Even though three growing seasons are not enough to draw final conclusions, results of the  study 
demonstrated that VIs from satellites can serve as a tool for providing yield estimation prior to harvest. 
The UAV survey by the drone was carried out only in the 2016 and more campaigns will be included 
in following years of future research. The UAV survey provided 9 different indices that were able to 
detect differences in crop development within the field. Generally, UAV surveys represent a flexible 
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approach with the  high spatial and temporal resolution useful for site specific crop management. 
UAV surveys can amend satellite data in yield estimation at such a detailed scale (field) while satellite 
data can be used for periodic monitoring of crops, even though with low spatial resolution. 
Utilization of remote sensing products can be useful for both the field as a whole and for its parts that 
can by visually assessed as homogenous, and some deviations or stress occurrence could be delimited 
using VIs from remote sensing. As a non‑destructive method, remote sensing can be utilized several 
times during the growing season. It can provide crucial information about crop development and be 
used for real‑time agronomic decision making. 
Further investigation is needed for a  better understanding of the  index‑yield relationships at such 
a detailed scale. This will include the use of a wider range of remote sensing indicators from different 
sources at various frequencies and spatial resolutions.
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