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Abstract

TEJKAL MARTIN, HÜBNEROVÁ ZUZANA. 2018. Comparison of Approaches to Testing Equality 
of Expectations Among Samples from Poisson and Negative Binomial Distribution. �Acta Universitatis 
Agriculturae et Silviculturae Mendelianae Brunensis, 66(4): 1025 – 1034.

The paper deals with testing of the  hypothesis of equality of expectations among p samples from 
Poisson or negative binomial distribution. a  comparison of two main approaches is carried out. 
The  first approach is based on transforming the  samples from either Poisson or negative binomial 
distribution in order to achieve normality or variance stability, and then testing the  hypothesis of 
equality of expectations via the F‑test. In the second approach, test statistics coming from the theory 
of maximum likelihood appearing in generalised linear models framework, specially designed 
for testing the  hypothesis among samples from the  respective distributions (Poisson or negative 
binomial), are used. The comparison is done graphically, by plotting the simulated power functions 
of the  test of the  hypothesis of equality of expectations, when first or second approach was used. 
Additionally, the relationship between the power functions obtained via the respective approaches 
and sample sizes is studied by evaluating the respective power functions as functions of a sample size 
numerically.

Keywords: Poisson distribution, negative binomial distribution, ANOVA, F‑test statistic, generalized 
linear model, likelihood ratio, score statistic, variance stabilizing transformation, Yeo‑Johnson 
transformation, power function

INTRODUCTION
In applications, we often meet data involving 

counts. For modelling of such data Poisson 
distribution, or in case of heteroscedastic data, 
negative binomial distribution is often used. If we 
want to test the hypothesis of equality of expectations 
among a  given number of independent samples of 
such data, we cannot use the  classical analysis of 
variance framework, because the  assumptions of 
the normality and variance stability of the data are not 
met. Hence a different strategy has to be developed.

One of the  possible approaches is to transform 
the  samples in order to meet the  assumptions 

of classical analysis of variance (see Scheffé, 
1999). In the  case of Poisson or negative binomial 
distribution, a  logarithmic transformation is 
often suggested (see Moss and McPhee, 2006). 
The  problem of zero observations is solved 
by adding 1 or another positive constant into 
the  argument of the  logarithm. Another possible 
solution is to use variance stabilising transformation 
(see Anděl, 2011; Tejkal, 2017), or some other 
transformation that assures, that the  transformed 
random variable is approximately normally 
distributed. Such a  transformation might be for 
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example of the  Yeo‑Johnson family (see Yeo and 
Johnson, 2000).

Another possible approach is to use wholly 
different test statistic, specially designed for 
testing the  hypothesis among samples from 
a  given distribution. Such test statistics come 
from the theory of maximum likelihood, and they 
appear in the  framework of the  generalised linear 
models (GLM).

The goal of this paper is to provide the reader with 
a  comparison of the  above mentioned approaches. 
This is done by comparing the  power functions 
of the  test statistics, when testing the  hypothesis 
of equality of expectations among p samples of 
the  same size from the  Poisson and the  negative 
binomial distribution. Additionally, the relationship 
between power functions and sample size is 
studied, and the  comparison of power functions 
for different sample sizes is provided. The results of 
this comparison may be straightforwardly applied to 
experimental design to determine sample size.

MATERIALS AND METHODS

Assumed models
Let Yi = (Yi1,  ..., Yin)T for i = 1, ..., p be the  random 

samples of a size n from either Poisson distribution 
Po(θi) with expectation parameter θi, or negative 
binomial distribution NBi(θi , κ) with expectation 
parameter θi and shape parameter κ. For the  sake 
of convenience, the  parameter of the  Poisson 
distribution and the  first parameter of the  negative 
binomial distribution are denoted by the  same 
symbol. Furthermore, assume that for both Poisson 
and negative binomial case we have EYij = θi for all 
i = 1, ..., p and j = 1, ..., n. For completeness, we present 
the  probability density function of the  negative 
binomial distribution under this parametrisation:
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For details about this parametrisation of negative 
binomial distribution see Tejkal (2017).

Assume that the  p random samples are mutually 
independent. We want to test the hypothesis 

H0 : θ1 = ... = θp � (2)

of equality of expectations among the  p samples 
against the alternative 

H1 : ∃i, k ∈ {1, ..., p},  i ≠ k, such that θi ≠ θk� (3)

Approach via Transformations
For the  samples from Poisson distribution 

we consider the  following transformations, 
the logarithmic transformation 

Z = ln (Y + 1),� (4)

the square root transformation 

= +Z Y k ,� (5)

where the  value of the  constant k is chosen to be 
optimal according to Anscombe (1948), i.e. = 3

8k  . 
Finally, we consider the  so called Yeo‑Johnson 
transformation given by
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where he value of the parameter λ can be estimated 
by maximum likelihood estimation (see Yeo and 
Johnson, 2000).

For the  samples from negative binomial 
distribution we consider again the  logarithmic 
transformation (4), the Yeo‑Johnson transformation 
(6), and additionally also the argument of hyperbolic 
sine transformation 
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6 6 6 27 41 21 6 9c  and 
d = – 2c are the optimal values of the constants c and κ 
according to Anscombe (1948).

The formulas (5) and (7) are generalised versions 
of variance stabilising transformations for 
the  respective distributions (see Anděl, 2011). Full 
derivations of the  optimal values of the  constants 
can be found in Anscombe (1948) or Tejkal (2017).

It is assumed, that after applying one of 
the introduced transformations to the initial model, 
the  classical one‑way analysis of variance setting is 
obtained. I. e. for each i = 1, ..., p is Zi = (Zi1, ..., Zin) T 
the  random sample of a  size n from N(μi,σ2) and, 
furthermore, the  p random samples are mutually 
independent. The  extent of how much this 
was satisfied in the  respective cases of different 
transformations was checked by computing 
the estimation of the variance and the estimation of 
skewness of the transformed sample. The following 
estimators were used
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for estimating skewness, where == ∑1
1

n
i j ijnZ Z  is 

the arithmetic mean of the i‑th sample.
The F‑test statistic used to test the  hypothesis 

of the  equality of expectations of the  transformed 
samples is given by 
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where 1
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p n
i j ijnpZ Z= == ∑ ∑ . In what follows, we 

will denote ( )d
Q p  a  quantile of a  distribution   

with d degrees of freedom. The F test is carried out 
by comparing the  value of the  test statistics with 
the respective quantile 

( )
( )α
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−

1, 1
1

p p nFQ  for the selected 
level of significance α. 

Approach via Tests from GLM Framework
In the  case of Poisson distributed samples, 

the  following two test statistics will be used to test 
the  hypothesis of the  equality of expectations. 
The  likelihood ratio test statistic (see Hrdličková, 
2002), which is given by 
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and the  score test statistic (see Hrdličková, 2006), 
which is given by 
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of negative binomially distributed samples, 
the  following two test statistics will be used. 
The  likelihood ratio test statistic (see Hübnerová 
and Doudová, 2011), that is given by 
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and the  score test statistic, that for the  negative 
binomial case (see Hübnerová and Doudová, 2011) 
is given by 
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For all the  test statistics (11), (12), (13), and (14) 
the  test is carried out by comparing the  value of 
the test statistic with the respective quantile ( )χ

α
−

−2
1

1
p

Q  
for the selected level of significance α.

Comparing Power Functions
Let Ω be the  parametric space, let θ be an 

element of Ω. Let us denote β(θ) the  conditional 
probability of rejecting the  null hypothesis, given 
that the  alternative, characterised by the  value of 
parameter θ, holds. The  function β(θ) with values 
θ ∈ Ω is called the power function of a test.

In this paper, the main focus will be on providing 
a  comparison of power functions obtained via 
simulations. a  more theoretical approach is 
developed in Tejkal (2017). Its use is, however, limited 
only for obtaining power functions of the  F‑test 
after either transformation (4) or (5) is applied in 
the Poisson case or transformation (4) or (7) is applied 
in the  negative binomial case. Additionaly, the  p 
samples have to be of the same size. The method used 
for obtaining the results of the theoretical approach 
will be explained briefly in the following subsection. 
For details see Tejkal (2017).

The process of computing power functions for 
Poisson case by any of the  approaches does not 
differ from the  negative binomial case, therefore, 
when providing the  description, it will not be 
differentiated between the  two distributions. 
Recall that the  expectation parameters of both 
distributions are denoted θ.

Theoretical Power Functions
The theoretical approach to obtaining 

the  approximations of power functions of 
the  F‑test in cases described above is based on 
the following. The power function of the F‑test can 
be approximated as described in the Proposition 1.

Proposition 1. The power of the  F‑test βα(θ) on the  level of 
significance α may be written as follows 
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Proof. Straightforward use of properties of conditional 
probability. � □

Furthermore, it is assumed, that the  expectation 
parameters of the  distribution of the  transformed 
random samples are known. In practical 
computations approximations of the  numerical 
characteristics are used.

With these assumptions, the  value of the  power 
function of the  F‑test given by formula (15) can 
be computed at any point θ. Approximations of 
the  power functions of the  tests in GLM can be 
found in Hrdličková (2008). 

Simulated Power Functions
The simulated power functions are computed in 

the  following way. An initial value of expectation 
parameter θ1 are chosen. Additionally, the  value of 
the parameter κ is selected for the negative binomial 
case. The  significance level α = 0.05 is considered 
hereinafter.

The p random samples Yi for i = 1, ..., p of 
a  size n from either Poisson or negative binomial 
distribution are generated. The  values θ2, ..., θp 
are obtained from θ1 by adding and subtracting 
multiples of a number hj according to the formula
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where j is the number of the run of the algorithm. 
Denote s a fixed step, and set h1 = s for j = 1. For j > 1 
the value of hj is given by the following formula 

hj + 1 = hj + s� (17)

that characterises θ in β(θ). When using 
the  approach via transformations, the  random 
samples are transformed using (4), (5), and (6) for 
the Poisson case and (4), (7), and (6) for the negative 
binomial case, obtaining transformed random 
samples Zi for i = 1, ..., p. The  optimal value of 
the parameter λ of transformation (6) is determined 
via maximum likelihood method (see Yeo and 
Johnson, 2000). The  F statistic is computed 
using formula (10). The  transformed samples 
Zi = (Zi1, ..., Zin)T for i = 1, ..., p stacked one above each 
other are used as the input vector Znp = (Z11, ..., Z1n,  ... 
..., Zp1, ..., Zpn)T. The  value of the  F statistic is then 
compared with quantile 

( )
( )α

− −
−

1, 1
1

p p nFQ  to decide 
about the result of the test.

In case of the approach via test statistics of GLM 
framework, the  original samples Yi for i = 1, ..., p 
are used as input. The  values of the  test statistics 
(11) and (12) in the  Poisson case and (13) and 
(14) in negative binomial case are computed and 
compared with quantile ( )χ

α
−

−2
1

1
p

Q .
This process is repeated k times for the  same 

setting of parameters in order to compute 
the  relative frequency of rejecting hypothesis H0 
(see (2)). The  value of hj increases with every run 
of the  algorithm (see (17)). Hence, by re‑running 
the  algorithm the  values of the  simulated power 
function are obtained.

The practical computation was done for 
the  values of the  parameters collected in Tab.  I, 
from which the  most interesting cases will be 
presented in the  Results section of this paper. 
The number of repetitions of the algorithm used in 
the practical computation was k = 1000.

Notice that for p = 3 the  value hj in each run of 
the  program is the  difference between the  fixed 
expectation parameter θ1 and the  expectation 
parameters θ2, θ3 of the  other two distributions, 
which increase and decrease respectively. I. e. 
h1 = ǀθ1

 – θ2ǀ = ǀθ1
 – θ3ǀ. 

Comparison of Power Functions 
for Different Sample Sizes

Lastly, the  relation between the  power 
functions and the  size of the  samples was 
studied via simulations. The  method is based 
on the  computations described in the  section 
Simulated Power Functions and was carried out for 
values of parameters given by the  Tab.  I. By doing 
these computations for varying sample size n, a set of 
points of the  simulated power function for chosen 
approach for different sample sizes was obtained. 
I.  e. the  set of values describing the  relation 
β = β(hj, n). By fixing the  value hj, meaning that 
the difference between the expectations θ1, θ2, and θ3 
is fixed, a set of points describing the relation β = β (n) 
for given hj is obtained. The described procedure is 
done for each method of the  two approaches, and 
the graphical comparison of the results is presented 
for each method for selected choices of parameters.

The fixed values of hj were chosen to be in 1 / 4, 
1 / 2 and 3 / 4 of the interval, on which the simulated 
power functions were computed. The value of hj in 
the quarter of the computational interval was chosen 
to observe what happens for varying sample sizes, 
when the  differences between the  expectations 
θ1, θ2, and θ3 are relatively small. The  value of hj in 
the  half of the  computational interval was picked 
to observe the  changes, that happen for increasing 
differences between the  expectations. Finally, 
the value in the three quarters of the computational 
interval was selected to observe what happens, 
when the  differences between the  expectations are 
relatively big. Nonparametric regression methods 
were applied to fit the obtained data.

RESULTS

Poisson Case
We will start with a comparison of the estimations 

of variance and skewness of the  transformed 
random sample, when transformations (4), (5), and 
(6) were applied.

In the  left graph of Fig.  1 one can see 
a  comparison of sample variance estimates for 
θ ∈ [0, 100]. Notice, that only the transformation (5) 
has truly the variance stabilising property.

The comparison of sample skewness is 
represented graphically by the right graph of Fig. 1. 
Here one can observe that both transformation 
(5) and (6) perform very well. The  skewness of 
the  samples transformed via (5) and (6) is very 
close to zero, and therefore it can be assumed, that 

I:  Values of the parameters

Distribution  Number of samples  Sample size  Expectation 
parameter  Shape parameter 

Po(θ) p = 3 n = 100 θ = 5, 10, 20, 50 – 

NBi(θ, κ) p = 3 n = 100 θ = 5, 30, 50, 100 κ = 3, 5, 10
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the transformed sample is approximately normally 
distributed. Observe that when the transformation 
(4) is applied, however, for small values of 
expectation parameter, the  departure from 
normality may be significant.

We will continue by presenting the  graphical 
comparison of the power functions for the Poisson 
case. The smooth lines in Fig. 2 represent the power 
functions of transformations (4) and (5) obtained 
via the theoretical approach. The points represent 
power functions obtained via simulations. Observe 
that the  transformation (4) performs the  worst, 
(5) and (6) both perform similarly, better than (4). 
The  approach via likelihood ratio test statistic 
(11) gives slightly better results than the  approach 
via transformations. The  score statistic simulated 
power function (12) attains the  highest values out 
of all the  power functions in the  points, where 
the  numerical computation was carried out. 
However, it does not attain the value β = 0.05 when 
the expectation parameters among the samples are 
equal. We conclude that the score test tends to have 
higher simulated test size than the chosen level of 
significance α = 0.05. The  simulation results for 
transformations (4) and (5) are in accordance with 

the theoretical power functions. For the increasing 
value of the  parameter θ, the  differences between 
the simulated power functions become negligible.

We assume that the  weak performance of 
the  transformation (4) is caused by the  fact that 
the skewness of the transformed sample is different 
from zero (see Fig. 1) and hence, the departure from 
the normality of the transformed sample might be 
significant. Furthermore, the  transformation (4) 
lacks the variance stabilising property (see Fig. 1).

We will conclude the  Poisson case by providing 
figures of the  comparison of the  power functions 
for different sample sizes. From this graphical 
comparison one can observe, what the  necessary 
sample size is to distinguish the  difference hj 
with a  required probability, for a  given approach. 
Recall that the  value of hj is the  difference 
between the  fixed θ1 and the  computed θ2 and θ3 
respectively. The sample size needed to distinguish 
the  difference  hj = 0.513 with the  probability 
β = 0.8 by score test statistic (12) is n = 82. By 
likelihood ratio test statistic (11) it is n = 89. By 
the  worst performing method using logarithmic 
transformation the  required sample size is n = 99 
(see Fig. 3).

1:  Poisson case ‑ variance (left) and skewness (right) estimates for transformations (3) (red), (4) (blue) and (6) (black)

2:  Poisson case – power functions comparison for θ1 = 5, θ2 = θ1 + h, θ3 = θ1 – h,
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Negative Binomial Case
As before, we will start by comparing the variance 

and skewness estimates of the transformed samples 
when transformations (4), (7), and (6) were applied.

In Fig.  4 we can see the  comparison of sample 
variances for increasing values of κ. Notice that 
both transformations (4) and (7) have the  variance 
stabilising property, while (6) clearly does not.

The graphical comparison of sample skewness for 
increasing values of  is provided in Fig. 5. Notice that 
the sample skewness of the samples transformed via 
(6) is always close to 0. For the samples obtained by 
applying the  other two transformations this is not 
true. We may, however, observe, that with increasing 
value of κ the  value of skewness of these two 
samples gets closer to 0. Additionally, for smaller 

3:  Poisson case – power functions as functions of a sample size for hj = 0.513 (approximately a quarter of the computation interval), 
θ1 = 5, θ2 = θ1 + h = 5.513, θ3 = θ1 – h = 4.487

4:  Negative binomial case – variance estimation via sample variance for transformations (4) (red), (7) (blue) and (6) (black) 
for values of parameter κ = 3, 5, 10 from left to right

5:  Fig.  5: Negative binomial case – skewness estimation via sample skewness for transformations (4) (red), (7) (blue) and (6) (black) 
for values of parameter κ = 3, 5, 10 from left to right 
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values of θ the  transformation (7) outperforms 
(4) in the  terms of skewness. In general we may 
say that for the  samples transformed via (4) or (7) 
the  departure from normality may be significant 
especially for small values of κ. For greater values of 
κ the performance of (7) slightly improves.

We will continue by presenting the  graphical 
comparison of simulated power functions. Out 
of the  multitude of computational results for 
various choices of parameters, we will present 
the  cases for the  following pairs of parameters 
θ1 = 5, κ = 3; θ1 = 5, κ = 10; θ1 = 100, κ = 10; and 
θ1 = 50, κ = 5. The  reason for the  choice of 
the  first pair is to observe, how the  methods of 
the different approaches tackle with the worst case 
scenario – a relatively small expectation parameter 
and a  small shape parameter. The  second pair 
represents the  case of a  relatively small value of 
the  expectation parameter but relatively big value 
of the  shape parameter. The  third pair represents 
the  choice of big values of both parameters and 

finally, the  last pair represents the  choice of 
moderately big expectation and shape parameters. 
Additionally, for the  case  and  the  comparison is 
enriched by the  theoretical power functions for 
samples transformed via (4) and (7) (see Fig.  9, red 
and blue lines respectively). For the  other two 
cases that are covered in the graphical comparison, 
the  theoretical power functions are not presented 
because the  approximations of numerical 
characteristics used in the  computations do not 
behave well (for more detail see Tejkal, 2017).

From the  Figures 6, 7, and 9 we can see that 
the  worst performance regardless of the  setting of 
the parameters has the transformation (4). In case of 
small shape parameter κ (see Fig.  6), the  difference 
between (4) and (7) is not very significant. However, in 
case of big value of the shape parameter κ (see Fig. 7) 
(7) performs better than (4). This ceases to be true 
for big values of the  expectation parameter θ (see 
Fig. 8). The best performance out of the approach via 
transformations has transformation (6).

6:  Negative binomial case – Power functions comparison for κ = 3, θ1 = 5, θ2 = θ1 + h, θ3 = θ1 – h 

7:  Negative binomial case – power functions comparison for κ = 10, θ1 = 5, θ2 = θ1 + h, θ3 = θ1 – h  
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8:  Negative binomial case – power functions comparison for κ = 10, θ1 = 100, θ2 = θ1 + h, θ3 = θ1 – h

9:  Negative binomial case – power functions comparison for κ = 5, θ1 = 50, θ2 = θ1 + h, θ3 = θ1 – h

10:  Negative binomial case – power functions as functions of a sample size at hj = 7.98 (approximately a half of the computation interval) for 
the setting of parameters κ = 3 and θ1 = 30, θ2 = θ1 + h = 37.98, θ3 = θ1 – h = 22.02
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Notice also, that for a  good performance of 
a transformation it seems to be more important, that 
the  skewness of the  transformed sample is close to 
0, than that the  variances among the  samples are 
equal. Observe that (6). that performs the best out of 
the  considered transformations, does not stabilise 
variance in the  particular studied case (see Fig.  4), 
however, the  skewness of samples transformed via 
(6) is close to 0 (see Fig. 5).

Using test statistic coming from the  theory of 
maximum likelihood seems to be the best approach 
since the power function of the test when either (13) 
or (14) is used attains higher values than any power 
function of the  approach via transformations. 
The  simulated power function of the  test statistic 
(14) tends to attain slightly higher values than 
the  one of (13). We may further observe, that for 
increasing values of θ and κ the differences between 
the power functions become smaller (cf. Fig. 6 with 
9, and 6 with 7).

Lastly, we will present the  graphical comparison 
of the  power functions for different sample sizes 
for all the studied approaches. Recall that the value 
of hj is the  difference between the  fixed θ1 and 
the computed θ2 and θ3 respectively.

From Fig.  10 we can observe, that for the  best 
performing method (likelihood ratio test statistic 
(13)), to distinguish the  difference hj = 7.98 with 
probability β = 0.8, samples of a  size n = 23 are 
needed. For the  worst performing pair of methods 
(logarithmic transformation (4) and argument of 
hyperbolic sine transformation (7)), to distinguish 
the  difference hj = 7.98 with probability β =0,8, 
samples of a size n = 28 are needed.

DISCUSSION
The early trend in tackling the  non‑normal 

heteroscedastic data involving counts in linear 
regression and the  respective tests was to apply 
various transformations in order to achieve normality 
and homoscedasticity. To improve the  desired effect 

of the  transformations of the  random variables 
with Poisson and negative binomial distribution, 
Anscombe (1948) introduced generalisations of 
the  variance stabilising transformations. For data 
involving counts it is often convenient to use 
the  logarithmic scale, therefore the  logarithmic 
transformation comes, perhaps, as a  natural 
choice. The  problem of zero observations is 
usually solved by adding a  constant (usually one) 
into the  argument of the  logarithm. Some authors 
even suggest different constants. Anscombe 
(1948) derives the  logarithmic transformation for 
negative binomially distributed random variable 
as an approximation of the  more complicated 
argument of hyperbolic sine transformation and 
finds an optimal value of the  constant added 
within the  argument to be a  function of the  shape 
parameter κ of the  distribution. Yamamura (1999) 
suggests using transformation Y = ln(X + 0.5) instead 
of Y = ln(X + 1). Numerical analysis carried out when 
collecting data for this paper, however, did not suggest, 
that there is a significant improvement in the power 
of the test when Anscombe’s or Yamamura’s choice of 
the optimal constant was used instead of adding one 
within the  argument of the  logarithm. On the  other 
hand, the family of transformations developed by Yeo 
and Johnson (2000) performed in our comparison 
significantly better than both the  logarithmic 
transformation with one added within the argument 
or the transformations proposed by Anscombe.

More recent development (see O’Hara and Kotze, 
2010) has shown that for modelling data involving 
discrete counts, models based on Poisson or 
negative binomial distribution attain better results 
than the  approach via transformations. The  results 
of this paper in general support this statement. 
The  GLM based tests outperformed the  approach 
via transformations in all studied cases. However, 
for some cases, the  difference between the  GLMs 
and the  approach via Yeo‑Johnson transformation, 
the  best performing one out of the  studied 
transformations, was rather small.

CONCLUSION
The presented analysis provides a  comparison of different methods of testing the  hypothesis of 
equality of expectations for data involving counts. Poisson and negative binomial distributions were 
used to model the data. Two main approaches were used, the approach via normalising and variance 
stabilising transformations, followed by applying the classical ANOVA towards the transformed data, 
and the approach via GLM test statistics.
In the Poisson case, the GLM test statistics performed better than the transformational approach. By 
far the  highest values were attained by the  simulated power function of the  score test statistic (12) 
followed by the power function of the likelihood ratio test statistic (11). The likelihood ratio test statistic, 
in turn, performed slightly better than any of the transformations. It should be noted, however, that 
the score test tends to have greater simulated test size than the chosen level of significance α = 0.05, 
since the  respective power function did not attain the  value 0.05 for h = 0. The  square root (5) and 
the Yeo‑Jonnson transformation (6) both performed similarly and both better than the logarithmic 
(4) transformation, which performed the worst. With increasing values of the expectation parameter 
θ of the Poisson distribution, the differences between the power functions of the different approaches 
became negligible.
In the negative binomial case, the results were dependent both on the choice of the initial value of 
the expectation parameter θ and the shape parameter κ. In all settings, better result was obtained when 
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the  GLM test statistics were used. The  simulated power function of the  score statistic (14) attained 
higher values than the one of the likelihood ratio statistic (13). All of the transformations performed 
worse than the GLM test statistics. The Yeo‑Johnson transformation (6) outperformed the argument 
of hyperbolic sine transformation (7) and the  logarithmic transformation (4). The  argument of 
hyperbolic sine achieved better results than the logarithm for small values of θ and big values of κ. 
The difference between these two transformations for small values of θ and κ and for big values of θ 
independently of κ were not significant. For increasing values of the parameters θ and κ the differences 
between the power functions of the different approaches became negligible.
Finally, by comparing the power functions for different sample sizes we saw, that by choosing the right 
approach, we can obtain a given power of the test with significantly smaller sample, than in the case 
of picking a less suitable approach. Namely, the difference between the worst and best performing 
method in the comparison provided in this paper was 10 samples in the Poisson case and 5 samples 
in the negative binomial case.
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