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This article is an overview of dendritic cells (DCs) in cattle. The  understanding of the  immune 
system and the role of DCs in many ways can contribute to their use in the prevention and treatment 
of many infectious and autoimmune diseases. DCs are bone marrow-derived cells that function as 
professional antigen presenting cells. They act as messengers between the  innate and the  adaptive 
immune systems. The  morphology of DCs results in a  very large surface to volume ratio. That is, 
the DCs have a very large surface area compared to the overall cell volume. Currently, most dendritic 
cells research occurs in the human and mice. There is a lack of studies in cattle describing DCs. DCs 
survey the body and collect information relevant to the immune system. They are then able to instruct 
and direct the adaptive arms to respond to challenges.
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INTRODUCTION
Dendritic cells (DCs) are antigen presenting cells, 

which capture microbial antigens that enter from 
the external environment, transport these antigens 
to lymphoid organs, and present the  antigens to 
naive T lymphocytes to initiate immune responses 
(Abbas  et  al., 2014). DCs provide communication 
between innate and adaptive immune systems. DCs 
are present in most tissues and are concentrated in 
lymphoid organs and in interfaces with the external 
environment, such as the skin (there is a specialized 
DCs type also called the  Langerhans cell) and 
the gastrointestinal and respiratory tracts and blood. 
During certain stages of development, DCs develop 
branched projections called “dendrites”, which is 
why they are so named.

First to describe DCs was Paul Langerhans in 
1868. DCs were first identified in mice by Steinman 
and Cohn in 1973, and were shown to represent 
a heterogeneous population distributed in lymphoid 
and nonlymphoid tissues throughout the  body 
(Ardavin et al., 1993; Austyn et al., 1994). 

These cells are the  aim of investigation in many 
laboratories due to their role as adjuvants for 
vaccines that prevent microbial infections and 
treat cancer (De Smedt  et  al., 1996; Kirschner,  2006; 
Steinmann, 1991). They not only have an enhancing 
effect on the  acquired immunity development, but 

can induce tolerance and can likely be manipulated to 
prevent and treat allergic and autoimmune diseases. 
DCs play an important role in the  pathogenesis of 
viral infections human immunodeficiency virus 
(HIV) and they might also be directed to enhance 
immunisation procedures (Werling  et  al., 1999; 
Yamanaka  et  al., 2005). DCs should be targeted by 
DNA vaccination (Condon et al., 1996). 

The phenotype and functions of DCs are best 
known in humans and mice, however this overview 
is focused on the DCs in cattle.

Life cycle of dendritic cells
Dendritic cells are formed from hematopoietic 

progenitor cells in the  bone marrow (Banchereau 
and Steinman, 1998). Initially, the  progenitor cells 
form immature DCs which have the endocytic 
capability but a  low capacity to stimulate T cells 
(Mandal, 2014). These immature cells monitor 
their environment for invaders such as bacteria 
and viruses, which they achieve through pattern 
recognition receptors (PRRs) such as toll-like 
receptors (TLRs) (Syme and Gluck, 2001). 

As soon as these immature cells meet a  presented 
antigen, they mature and move towards the  lymph 
nodes. The  immature dendritic cell engulfs 
the pathogen and breaks down its proteins, which it 
presents on its surface using major histocompatibility 
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complex (MHC) molecules once it matures (Mandal, 
2014). At the  same time, the  cell‑surface receptors 
that act as co-receptors in T-cell activation are 
upregulated by DCs (Abbas et al., 2014). Furthermore, 
the chemokine receptor (CCR) 7 is also upregulated. 
This chemotactic receptor induces the  movement 
of dendritic cells through the  blood and towards 
the spleen or lymph node where they activate T cells 
and B cells through antigen presentation. Activated 
macrophages have a lifespan of a few days, lifespan 
of activated DCs is similar. However, it appears 
that immature dendritic cells can remain in their 
inactivated state for significantly longer periods of 
time (Mandal, 2014).

DCs can also develop from CD14+ peripheral 
blood monocytes cultured with granulocyte 
macrophage colony-stimulating factor (GM-CSF) 
and interleukin (IL) 4 (Sallusto and Lanzavecchia, 
1994). Under this culture conditions monocytes 
develop into a  homogenous population of DCs 
without dividing (Cella, 1997). These cells have 
the  characteristics of immature DCs and can 
be further induced to mature by inflammatory 
stimuli such as tumor necrosis factor α (TN-Fα), 
IL-1 or lipopolysaccharide (LPS) (Sallusto and 
Lanzavecchia, 1994) or by monocyte conditioned 
medium (Romani  et  al., 1996). It is interesting that 
immature DCs generated from monocytes still 
retain the  monocyte colony-stimulating factor 
(M-CSF) receptor, although they lose it following 
induction of maturation (Romani et al., 1996). Thus, 
the  emerging concept is that monocytes represent 
an abundant source of precursors that can polarize 
towards DCs or macrophages, depending on 
the external stimuli. This polarization can be driven 
in vitro by the  addition of appropriate cytokines 
(GM-CSF, IL-4 or M-CSF) (Cella, 1997).

Types of dendritic cells
DCs are heterogeneous cells that can be divided 

into the  few functionally-distinct subsets on 
the  basis of their phenotype, the possibility of 
migration and the ability for cytokine production, 
that modulate both innate and adaptive immune 
response (Sato and Fujita, 2007). Dendritic cells can 
be classified into two major cell subsets:  classical 
DCs (also called conventional DCs) and 
plasmacytoid DCs. Classical DCs have the ability to 
stimulate strong T  cell responses, and are the  most 
numerous DCs subset in lymphoid organs. Most of 
them are derived from myeloid precursors, which 
migrate from the  bone marrow to differentiate 
locally into resident dendritic cells in lymphoid and 
non‑lymphoid tissues. Like tissue macrophages, 
they constantly sample the  environment in 
which they reside. In the  intestine, for example, 
DCs appear to send out processes that traverse 
the  epithelial cells and project into the  lumen, 
where they may act to capture luminal antigens. 
Langerhans cells are the  dendritic cells that 
populate the epidermis; they serve the same role for 
antigens encountered in the skin. In the absence of 

infection or inflammation, classical dendritic cells 
capture tissue antigens and migrate to the  draining 
lymph nodes but do not produce cytokines and 
membrane molecules that are required to induce 
effective immune responses. The  function of these 
dendritic cells may be to present self-antigens to 
self-reactive T cells and thereby cause inactivation 
or death of the T cells or generate regulatory T cells. 
These mechanisms are important for maintaining 
self-tolerance and preventing autoimmunity 
responses (Abbas  et  al., 2014). On an encounter 
with microbes or cytokines, the  DCs become 
activated: they upregulate costimulatory molecules, 
produce inflammatory cytokines, and migrate from 
peripheral tissues into draining lymph nodes, where 
they initiate T cell responses. 

Classical DCs may be divided into two major 
subsets. One, identified by high expression of 
BDCA-1 / CD1c in humans or the CD11b integrin in 
mice, is most potent at driving CD4+ T cell responses. 
The  other subset, identified by expression of 
BDCA-3 in humans or, in mice, CD8 in lymphoid 
tissues or the  CD103 integrin in peripheral 
tissues, is particularly efficient in the  process of 
cross‑presentation. Some DCs may be derived from 
monocytes, especially in situations of inflammation 
(Abbas et al., 2014).

Plasmacytoid DCs resemble plasma cells 
morphologically and acquire the  morphology and 
functional properties of DCs only after activation. 
Plasmacytoid DCs develop in bone marrow. They 
are found in the  blood and in lymphoid organs 
(Abbas  et  al., 2014). In contrast to classical DC, 
plasmacytoid DC are poorly phagocytic and do not 
sample environmental antigens. Plasmacytoid DC 
representing the most potent type I interferon (IFN) 
producing cell, able to efficiently sense microbial 
nucleic acid (Liu, 2005). 

DCs in blood are typically identified and 
enumerated in flow cytometry. There are three 
types of DCs in blood:  CD1c+ myeloid DCs, 
CD141+ myeloid and CD303+ plasmacytoid DCs 
(Ziegler‑Heitbrock et al., 2010).

Bovine dendritic cells
The bovine species is an interesting model for 

the study of the immune system mainly because of 
its size that eases the chirurgical access to the blood 
and lymph vessels (De Carvalho  et  al., 2006). Two 
models were used to investigate DCs in cattle. 
The cannulation of pseudo afferent lymphatic ducts 
after surgical removal of the  pre-scapular lymph 
node, originally described in sheep, were applied to 
cattle studies (Emery et al., 1987). This allows access 
to DCs that are draining from the skin that have not 
been extensively cultivated in vitro which should 
represent DCs ex vivo that are closely related in 
their properties to cells in vivo (Howard  et  al., 1999). 
Studies in humans showed that monocytes cultured 
in the  presence of GM-CSF and IL-4 acquired 
many of the properties of DCs (Sallusto et al., 1995). 
This monocyte derived DCs (MoDC) have been 
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shown to be highly effective at stimulating T cell 
responses and in the  uptake and processing and 
presentation of antigen (Howard  et  al., 1999). Such 
cells are readily available as autologous cells for in 
vitro investigations. They provide a further valuable 
model that does not involve the  use of prolonged 
isolation procedures (Howard  et  al., 1999). Methods 
to isolate sparse DCs were originally described 
to derive DCs from human blood and have been 
adapted to cattle (Renjifo  et  al., 1997), but produce 
only small numbers of cells which restricts their 
potential for investigation (Howard  et  al., 1999). 
The  cattle is an animal model for some human 
pathologies as the  bovine respiratory syncytial 
virus (BRSV), Creutzfeldt-Jacob disease, Crohn’s 
disease, T cell leukaemia and rotavirus diarrhoea 
(Hein and Griebel, 2003). Bovine DCs isolated from 
lymph were characterized phenotypically and 
functionally (Mc Keever, 1991). The generation of 
DCs from bovine blood monocytes was described 
(Werling  et  al., 1999). Bovine DCs were obtained 
from bone marrow cells cultured with GM-CSF 
and IL4 (Hope et al., 2000). The immune-phenotype 
of DCs from cattle was:  CD1high, MHC class II high, 
CD80 high, CD86 high, CD11a high, CD11b intermediate, 
CD11c low and CD14 low (De Carvalho  et  al., 2006). 
DCs generated from monocytes expressed CD14 
and CD11b (Howard  et  al., 1999). DCs of cattle 
are very good described in the  afferent lymph, 
in which two subsets were described:  a  major 
CD1bhighCD11a–CD13–CD26–CD172a+ subset and 
a  minor CD1b low CD11a + CD13 +CD26+ CD172a– 
subset (McKeever  et  al., 1992; Howard  et  al., 1997; 
Howard  et  al., 1999; Gliddon and Howard, 2002; 
Summerfield et al., 2015). Studies in cattle have shown 
that the DCs are phenotypically heterogeneous and 
that the  different phenotypes, related to their stage 
of maturation correspond to different biological 
properties (De Carvalho et al., 2006). 

Bovine DCs are divided into three groups:  bone 
marrow derived (BMDC / myeloid / conventional 
derived), monocyte related (MoDC, CD14+) and 
tissue resident (anatomical location).

During differentiation of monocytes into MoDC, 
CD1b, CD205, and CD206 are upregulated, but 
CD11c, CD14 and CD62L are downregulated 
(Werling  et  al., 1999; Bajer  et  al., 2003; 
Mackenzie‑Dyck  et  al., 2011; Summerfield  et  al., 
2015). Bovine monocyte derived DCs express 
myeloid markers (CD11a, CD11b, CD14 and 
CD172a) and when activated the expression levels of 
CD40, CD80 and CD86 are up-regulated. 

Bovine DCs differ phenotypically based on their 
tissue distribution. MHC II expression detects 
DCs of hematopoietic origin; CD 208+ DCs are 
found in lymphoid tissues and CD1b+ expressing 
DCs are mainly found in the  thymic medulla 
(Romero‑Palomo et al., 2013).

Bovine plasmacytoid DCs are still not as well 
characterized as human and mouse ones but 
researchers have shown that they express MHC II, 
CD4, CD172a, CD32, and CD45RB and produce 

very high levels of type I interferons in response to 
viral infections (e.g. foot and mouth disease (FMDV)) 
(Reid et al., 2011). 

Expression of the myeloid specific marker CD172a 
has also been used to identify the tissue distribution 
of bovine DCs (Miyazawa et al., 2006; Sei et al., 2014). 
MHC II, CD11c, and CD172a being expressed on 
peripheral blood DCs; CD1 and CD172a on DCs in 
the thymic medulla and CD11b and CD172a on DCs 
within the Peyer’s patches (Brimczok et al., 2005).

The finding that some of the Peyer’s patches DCs 
express the  prion protein (PrP) could indicate that 
these DCs may be involved in the  transmission 
of bovine spongiform encephalopathy (BSE) 
(Rybner‑Barnier C et al., 2006).

The differential expression of MHC II, CD208 
(DC-LAMP), CD1b, CD205 (DEC-205), CNA.42 
and S100 protein on DCs further helps to define 
DC subtypes. There are also special types of DCs 
as interdigitating DCs and follicular DCs (FDA DC). 
CD208 is expressed on interdigitating DCs present 
in the thymic medulla and within the Peyer’s patches 
follicles. CD1b identifies thymic DCs and CD205 is 
strongly expressed on afferent lymph DCs (ALDC). 
Bovine follicular dendritic cells can be identified by 
their expression of both CNA.42 and S100.

Bovine peripheral blood DCs express CD80 
and have been shown to consist of three different 
subsets (Sei et al., 2014): 
•	 immature CD4 + MHC II  –  pDCs that upon TLR 

stimulation upregulate their MHC II and CD80 
expression and produce large amounts of type 
I interferons; (DCs express TLR7 and TLR9) and 

•	 two cDC types that express MHC II but have different 
functional markers, cytokine profiles and antigen 
processing abilities:  CD11c+ MHC II + CD80high 
DCs (may be specialized in naive T cell activation 
expression) that produce TNF-α and have antigen 
processing abilities; and CD11c–MHC II + DCs 
which are precursors of CD11c+ DCs (Sei et al., 2014).
DCs are important in supporting the  initiation 

of an immune response. These cells traffic into 
affected mucosal tissues following infection with 
mycobacteria and generate the  induction and 
maintenance of an immune response at the mucosal 
surfaces. DCs can provide positive signals for 
the  induction of immunity versus mycobacteria. 
Bovine DCs can induce the  proliferation of 
mycobacteria-specific CD4+ and CD8+ T cells. 

Bovine macrophages and DCs are permissive 
for Mycobacterium bovis replication. They have the 
different role in bovine mycobacterial infections. 
DCs induce T-cell proliferation and activation 
whereas macrophages are primarily involved in 
curtailing bacterial replication and providing pro-
inflammatory signals that promote the  continual 
recruitment of inflammatory cells. The development 
of new generations of vaccines against bovine 
tuberculosis should elicit activation of DCs to 
stimulate maximal antigen presentation of IL-12 
and a robust protective T-cell response, in concert 
with an appropriate macrophage activation 
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profile, to fully restrict bacterial replication (Denis 
and Buddle, 2008). 

DCs produce IL-12 and pro-inflammatory 
cytokines upon mycobacterial infection, important 
for orientation towards a  Th1 response to control 
disease. However, it has been demonstrated 
that different APC (macrophages and DC) react 
differently to the  same stimulus. With regard to 
cytokines, macrophages react primarily by IL-10 
production, while DCs produce mainly IL-12 upon 
infection with Mycobacteria tuberculosis.

There is no reliable method established for 
the  isolation of bovine peripheral blood DCs, and 
furthermore, the  phenotypes and the  functions of 
bovine DCs are still not fully clear. The  regulation 
of humoral immune responses in cattle depends on 
the origin of DCs and the mode of B cell activation 
(Pinchuk, 2003).

Dendritic cells and mastitis
Many different bacterial species can cause an 

infection of the  bovine mammary gland. The  host 
response to these infections is what we recognize 
as mastitis. Mastitis is a  highly prevalent disease 
in dairy cows and economically costly to the  dairy 
industry worldwide (Bannerman, 2009). Clinical 
mastitis (CM) is characterized by visible changes in 
milk from the gland including the presence of clots, 
heat, pain or swelling of a  gland. CM is generally 
caused by an intermammary infection (IMI) with 
a  bacterial pathogen. Staphylococcal, streptococcal 
and Gram-negative bacterial species are general 
bacterial causes of mastitis (OldeRiekerink  et  al., 
2008; Barkema et al., 1998). Although intramammary 
infections occur at any time during the  life cycle 
of the  adult dairy cow, there is a  predominance 
of clinical mastitis cases in early lactation 
(Barkema et al., 1998).

The innate defence mechanisms of the mammary 
gland include physical barriers such as the  teat 
sphincter, chemical barriers such as teat canal keratin 
and lactoferrin, and more proper components of 
the immune system such as macrophages, DCs, mast 
cells, neutrophils, eosinophils and natural killer (NK) 
cells (Werling  et  al., 2006). The  first and mandatory 
step in the  immune defence against the  invading 
pathogen is recognition of pathogen. Mammals 
are equipped by receptors which recognize 

pathogens for instance toll-like receptors (TLRs) 
(Schukken  et  al., 2013). TLR signal transduction 
pathways activate transcription factors such as 
TNF, interferon (IFR) and activating protein-1 (AP1) 
(Akira and Takeda, 2004). DCs are major antigen 
presenting cells in the mammary gland. Recognition 
and uptake of antigen at the site of infection induces 
maturation of the  DC (Della Chiesa  et  al., 2005) 
and homing to the  supramammary lymph nodes 
(Maxymiv et al., 2012) where DCs present the antigen 
to naive T cells. Activated DCs express high levels 
of antigen-MHC complexes, secrete cytokines, 
and upregulate co‑stimulatory surface molecules 
such as CD40 and B-7 molecules, all which as 
necessary signals to induce and influence T cell 
activation and differentiation; in lactating cows, 
high levels of IL-12 secretion has been suggested 
to promote Th1 differentiation (Schukken  et  al., 
2013). IL-12 produced by DC also induces IFNγ 
production by other innate immune cells include 
NK cells thereby contributing to immediate 
pro‑inflammatory responses (Schukken  et  al., 
2013). A predominant Th1 response results in 
a  pro-inflammatory response, where production 
of pro-inflammatory cytokines results in a  massive 
influx of polymorphonuclear cells that aim to kill 
the invading organisms (Schukken et al., 2013).

Pregnancy presents a  major challenge to 
the  maternal immune system, both in normal 
and pathologic states (Denney  et  al., 2011). 
The  immune response is modulated to allow 
establishment and maintenance of a  viable 
pregnancy without rejection (Schukken  et  al., 
2013). Progesterone in concentrations present 
during pregnancy is a  potent inducer of the  Th1 
cytokines IL-4. A Th2 shift in pregnancy is also 
characterized by the reduction in IFN-γ and IL-2 
producing CD4+ and CD8+ T cells (Raghupathy, 
2001). Circulating pregnancy factors including 
progesterone and estrogens impact DC activation 
by impairing cytokine production and surface 
marker expression found necessary for T cell 
activation and Th1 differentiation, and induction 
of IFNγ production in other innate immune cell 
populations. The dominant Th2 response results in 
a limited inflammatory response and in most cases 
no signs of clinical mastitis will be the result of an 
intramammary infection (Schukken et al., 2013). 

CONCLUSION
Dendritic cells were described in cow and several other species. Further understanding DCs and 
related processes can contribute to the development of new treatments and open new opportunities 
for research such as organ transplantation, immunotherapy and treatment of mastitis in animals. 
DCs have potential in treatment of many infectious, allergic and autoimmune disease too. This paper 
provided an overview of DCs in cattle. The better understanding of DCs biology in number of species 
is important for their practical application in animal breeding.
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