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The  paper establishes entropy as a  measure of risk in asset pricing models by comparing its 
explanatory power with that of classic capital asset pricing model’s beta to describe the  diversity 
in expected risk premiums. Three different non‑parametric estimation procedures are considered 
to evaluate financial entropy, namely kernel density estimated Shannon entropy, kernel density 
estimated Rényi entropy and maximum likelihood Miller‑Madow estimated Shannon entropy. 
The comparison is provided based on the European stock market data, for which the basic risk‑return 
trade‑off is generally negative. Kernel density estimated Shannon entropy provides the most efficient 
results not dependent on the choice of the market benchmark and without imposing any prior model 
restrictions.
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INTRODUCTION
In the  recent review of emerging trends in asset 

pricing, Campbell (2015) considers entropy as 
a measure of uncertainty in the probability theory to 
be an alternative to variance in risk measuring. Even 
though the idea of using entropy in economic theory 
is at least 70 years old, it was famously ridiculed 
by Paul Samuelson and, given his authority, was 
popularized in econophysics just recently. Entropy 
was initially implemented in thermodynamics by 
Clausius (1870). Later Shannon (1948) showed that 
entropy concept can be applied in areas of science 
where probabilities can be determined. Since 
than, entropy became the  major cornerstone of 
information theory (see Paninski 2006 for extensive 
overview), from which econophysics and modern 
financial economics borrow heavily.

In finance, entropy is viewed as “a measure 
of dispersion, a  generalization of variance” 
(Backus  et  al. 2014). Maasoumi and Racine (2002) 
identify statistical properties of the entropy measure 
which are useful in regard to asset returns. Financial 
applications of entropy might be found in portfolio 
optimization (for example, Xu et al. 2011) or option 
pricing (Zhou  et al. 2006). According to Backus  et al. 

(2014) entropy being a  logarithmic measure can 
be easily computed for most of the  popular asset 
pricing models usually defined as log‑linear 
functions.

According to Ormos and Zibriczky (2014), 
implementing entropy in the  asset pricing models 
allows dismissing the  restriction on returns’ 
normality distribution. This limitation was inflicted 
on asset returns by the  use of standard deviation 
as a  measure of uncertainty in the  classic capital 
asset pricing models. Thus, restrictive assumptions 
of the  CAPM are not applicable for returns in 
the model based on entropy risk measure. Moreover, 
calculation of entropy does not require defining any 
market portfolio.

In our study, we consider two risk measures 
which can be applied in asset pricing:  the 
entropy  –  econophysics measure of risk, and 
the  beta coefficient  –  covariance‑variance ratio 
between the  market portfolio and individual stock 
return. Beta coefficient has been the classic measure 
of risk in equilibrium based asset pricing models 
and had no powerful alternative to compete with. 
In accordance with results of previous research 
in this field we consider that entropy could be 
such an alternative. Unlike the  variance that 



1890	 Galina Deeva

measures concentration only around the  mean 
(the mathematical introduction of beta is given in 
Equation 14), the  entropy measures diffuseness 
of the  density irrespective of the  location of such 
concentration. In the  statistical sense, the  entropy 
is not a  frequentist mean‑centered measure, but 
the measure taking into account the entire empirical 
distribution without concentrating on a  specific 
statistical moment. Simply put, the  entropy is 
the  weighted sum of all expected returns (next 
section provides a formal mathematical notation).

We are aimed to compare the explanatory power 
of standard CAPM beta and non‑parametric ways of 
entropy calculations as risk measures arising from 
exposures to general market movements. Our study 
is closely related to Ormos and Zibriczky (2014), but 
distinct in two main considerations/contributions. 
First, instead of histogram‑based density function 
estimation, we use kernel based and maximum 
likelihood estimations of entropy. Second, 
the  explanatory power of risk measures is tested 
on extended sample of European stocks. European 
stock market is an interesting case for the  testing 
of asset pricing models, since contrary to finance 
theory the  basic risk‑return trade‑off is generally 
negative for European stocks (Aslanidis et al. 2016).

MATERIALS AND METHODS
Since the  concept of entropy is implemented in 

many scientific areas, there are several measures 
of the  entropy which are used depending on 
the  characteristics of data. In compliance with 
efficient market hypothesis, the  stock market is 
an equilibrium system, which is a  requirement 
for the  implementation of Shannon and Rényi 
entropies. Even though the  efficient market 
hypothesis is largely criticized, we leave the  testing 
of entropy in terms of adoptive market hypothesis 
for further research.

Following Ormos and Zibriczky (2014) we 
consider a discrete random variable X, which has 
possible outcomes denoted by o1,o2,o1, … ,on, and 
corresponding probabilities pi = Pr(X = oi), pi ≥ 0 and 
Σn

i = 1 pi = 1. The generalized entropy function for the 
variable X is defined as:
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where α is the order of entropy, α ≥ 0 and α ≠ 1, which 
expresses the weight put on each outcome. In case 
of α = 1, the generalized entropy Hα(X) converges 
into Shannon (1948) entropy:
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In case of α = 2, the  generalized entropy Hα(X) 
converges into Rényi (1961) entropy:
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If the  considered random variable X is 
continuous with a probability density function f(x), 
the generalized continuous entropy (also known as 
differential) is defined as:
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The  Shannon and Rényi entropies in 
the continuous case are defined as follows:

( ) ( ) ( )1 ln dH X f x f x x= − ∫ 	 (5)

( ) ( )2
2 ln dH X f x x= − ∫ 	 (6)

In practice the  underlying probability function 
is unknown. The  density function is estimated 
non‑parametrically without assuming any 
particular theoretical probability distribution. 
The  kernel‑based density is estimated by 
the following formula:
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Where f̂(x) is the density estimation of the random 
variable X, n is the number of observations, h is the 
smoothing parameter (bandwidth) and K(˙) is the 
kernel function integrated to unity (∫K(u)du = 1). 
The  most common Gaussian form of the  kernel 
function is used:

( )1/2 22 exp uπ − − 	 (8)

The quality of the kernel function is largely based on 
the value of bandwidth. When a Gaussian kernel is 
used as a  reference function, the  optimal choice of 
bandwidth h or Silverman’s rule of thumb is:
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where σ̂ is the standard deviation of the sample.
As an alternative to kernel density estimation 

we also propose to use the  maximum‑likelihood 
estimator of Shannon entropy given by:
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The  multinomial distribution is than used 
to connect the  observed outcomes oi with 
corresponding frequencies θi:
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The maximum likelihood estimator of θi 
maximizes the function (11) for fixed number of 
outcomes on leading to the observed frequencies  
ˆML n
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and zero bias ˆ 0ML
iθ =  as ( )ˆML

i iE θ θ= . Even though 
ˆML

iθ  is unbiased, the plug in entropy estimator 
ˆ MLH  is not. According to Miller (1955), first‑order 
bias correction leads to so called Miller‑Madow 
estimator:
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where is m the number of cells with oi > 0.
The  entropy‑based risk measure is defined as 

follows:

( )logi i fH R Rαρ = − 	 (13)

where Ri is a stock return and Rf is a risk‑free 
return. Given Rm as a market return, the CAPM beta 
risk measure is defined as follows:
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As a simple way to compare the explanatory power 
of risk measures, we consider the linear relationship 
between the  expected risk premiumE(Ri − Rf) and 
risk measure ρi:

( )i ifE R R a bρ ε− = + + 	 (15)

Given the ordinary least square estimation of (15), 
the in‑sample explanatory power of risk measure is 
denoted by the goodness‑of‑fit:
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Data
The empirical analysis is based on European stock 

markets, for which STOXX® Europe 600 index is 
taken as a market benchmark. The index represents 
large, mid and small capitalization companies 
across 17 countries:  Austria, Belgium, Czech 

Republic, Denmark, Finland, France, Germany, 
Ireland, Italy, Luxembourg, the  Netherlands, 
Norway, Portugal, Spain, Sweden, Switzerland and 
the  United Kingdom. The  consistent prolonged 
data exists for 390 European stocks included in 
the index. The risk‑free rate is the 10‑year Germany 
government bond yield, reflected by Bloomberg in 
the automatic calculation of beta on the Bloomberg 
Terminal.

The  daily data are obtained from Bloomberg for 
the  period from the  beginning of January 2003 to 
the  end of June 2016. Each time series contains 
3509 price observations. The  dataset closely 
represents the  statistical population of the  most 
traded European stocks for which prolonged 
data exists. We evade from dividing the  sample in 
country sub‑samples for possible inconsistency 
of estimations based on smaller number of 
observations. Nevertheless, to adhere to normality 
restrictions of capital asset pricing model, we also 
consider weekly and monthly observations of 
the same data series.

Tab.  I reports the  results of chosen normality 
tests (namely Shapiro‑Wilk test, Anderson‑Darling 
test and Pearson’s chi‑squared test). The  results of 
normality tests for both market returns and risk‑free 
returns indicate that examined time series do not 
follow normal distribution in any tested frequency, 
thus, violating the  assumption behind capital asset 
pricing model and beta risk measure and justifying 
the use of non‑parametric techniques.

RESULTS
In order to analyse how the expected risk premium 

might be efficiently explained by risk measures, 
we estimate the  risk for each security using 
the  CAPM beta and three non‑parametric entropy 
measures:  kernel density estimated Shannon 
entropy, kernel density estimated Rényi entropy 
and maximum likelihood Miller‑Madow estimated 
Shannon entropy. Fig.  1 shows the  efficiency of 
explaining the  average long‑run risk premium by 
the  considered risk measures (estimated on weekly 
data). There is certainly no strong linear relationship 
between risk premium and risk measure, even 

I:  Results of normality tests

Data Test
Market returns Risk-free returns

statistic p-value statistic p-value

Daily

Shapiro-Wilk 0.9276 <2.2*10−16 0.59845 <2.2*10−16

Anderson-Darling 51.62 <2.2*10−16 364.44 <2.2*10−16

Pearson χ2 519.37 <2.2*10−16 4040.6 <2.2*10−16

Weekly

Shapiro-Wilk 0.91074 <2.2*10−16 0.64156 <2.2*10−16

Anderson-Darling 7.9896 <2.2*10−16 64.242 <2.2*10−16

Pearson χ2 79.685 1.278*10−7 641.92 <2.2*10−16

Monthly

Shapiro-Wilk 0.95451 4.492*10−5 0.7477 2.783*10−15

Anderson-Darling 2.3364 6.108*10−6 10.871 <2.2*10−16

Pearson χ2 29.8 0.005032 128 <2.2*10−16
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though the clustering of the results is apparent. 
The observations for the trade‑off  between expected 
risk premium and risk measure are less dispersed 
along the regression line for kernel density 
estimated entropies. 

Tab. II summarizes the results of linear 
regressions of risk premium on risk measure in 
three data frequencies: daily, weekly and monthly. 
The variability of observation frequency allows 
for the results to be robust to the level of relative 
volatility of the expected returns on individual 
stocks. For the daily data, the explanatory power 
of kernel density estimated Shannon entropy of 
6,3 % is the highest. Two other entropy measures 
perform similarly worse than Shannon entropy 
(goodness‑of‑fi t of 5,1 % and about 5,2 %), but 

better than the CAPM beta with 3,8 % effi  ciency. 
The unexplained risk premium (also known 
as Jensen’s alpha) given by the intercept in 
the regression is measured diff erently in sign by 
beta and entropies. Entropy‑based alpha indicate no 
excessive returns given the amount of risk.

The risk measures are certainly sensitive to 
the choice of observations frequency. Shannon and 
Rényi entropies also perform better than CAPM 
beta in weekly‑based and monthly‑based regression 
settings. The performance of maximum likelihood 
Miller‑Madow estimated Shannon entropy is, 
however, deteriorates with the diminishing 
observation frequency.

1: Explanatory Power of Risk Measures

CONCLUSION
Entropy is gaining prominence in asset pricing and fi nancial modelling, but there are still uncertainties 
about the usage of the specifi c calculation techniques. Since there are several measures and estimation 
procedures of entropy, the question arises: which one should be used in asset pricing models. As 
a continuing discussion to previous studies, we considered three non‑parametric possibilities. Our 
analysis based on European data demonstrates that the kernel density based entropy is a worthy option 
for the risk measure performing better than the CAPM beta. Even though we cannot directly compare 
our results to those of Ormos and Zibriczky (2014) set to diff erent approaches in entropy calculations, 
our outcome supports the previous fi ndings. The support comes in the form of the better explanatory 
power of Shannon entropy, which is the most widely used technique in information theory, as well as 
Rényi entropy. The performance of entropy‑based measures is stable over the choice of observation 
frequency. Moreover, the entropy provides a risk measure not dependent on the choice of the market 
benchmark and without imposing any prior model restrictions. Therefore, the entropy produces 
more exact and stable measure of risk and should be implemented and assessed by practitioners in 
their investment decisions.
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The  predictive power of entropy measure of risk should also be considered in further studies 
alongside with different concepts of entropy, such as Tsallis entropy, Kullback cross‑entropy and 
fuzzy entropy, which might be used for the formulation of entropy‑based risk measure in terms of 
adaptive market hypothesis.
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II:  In-sample explanatory power of tested risk measures

Data Estimate Std. error t-statistic p-value R-squared
D

ai
ly

(Intercept) 0.019614 0.002251 8.712 <2.2*10−16

0.03812
Beta 0.625979 0.159627 3.922 0.000104

(Intercept) −0.14287 0.09087 −2.271 1.95*10−5

0.0633
Shannon entropy 0.10970 0.06538 4.180 4.80*10−7

(Intercept) −0.15650 0.1498 −1.868 0.000103
0.05132

Rényi entropy 0.15558 0.1348 3.025 6.24*10−6

(Intercept) −0.18966 0.11749 −1.963 6.06*10−5

0.05206
ML entropy 0.13660 0.07718 3.439 5.32*10−6

W
ee

kl
y

(Intercept) 0.099892 0.009165 10.899 <2.2*10−16

0.07161
Beta 2.243827 0.410168 5.471 8.06*10−8

(Intercept) −1.2912 0.2324 −5.556 5.13*10−8

0.08788
Shannon entropy 0.8758 0.1432 6.114 2.37*10−8

(Intercept) −1.4532 0.2809 −5.174 3.68*10−7

0.07565
Rényi entropy 1.2946 0.2297 5.635 3.37*10−8

(Intercept) −0.9703 0.3578 −2.712 0.00699
0.02376

ML entropy 0.6544 0.2129 3.073 0.00227

M
o

n
th

ly

(Intercept) 0.58595 0.03997 14.66 <2.2*10−16

0.01661
Beta 2.01235 0.78609 2.56 0.0108

(Intercept) −4.8580 1.4453 −3.361 0.000853
0.03603

Shannon entropy 3.2440 0.8519 3.808 0.000163

(Intercept) −5.843 1.858 −3.146 0.001785
0.03049

Rényi entropy 5.125 1.467 3.493 0.000532

(Intercept) −0.9828 2.5235 −0.389 0.697
0.001071

ML entropy 0.9214 1.4286 0.645 0.519
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